Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 10, 2015

Modeling Extreme-Event Precursors with the Fractional Diffusion Equation

  • Michele Caputo EMAIL logo , José M. Carcione and Marco A. B. Botelho

Abstract

Extreme catastrophic events such as earthquakes, terrorism and economic collapses are difficult to predict. We propose a tentative mathematical model for the precursors of these events based on a memory formalism and apply it to earthquakes suggesting a physical interpretation. In this case, a precursor can be the anomalous increasing rate of events (aftershocks) following a moderate earthquake, contrary to Omori's law. This trend constitute foreshocks of the main event and can be modelled with fractional time derivatives. A fractional derivative of order 0 < v < 2 replaces the first-order time derivative in the classical diffusion equation.

We obtain the frequency-domain Green's function and the corresponding time-domain solution by performing an inverse Fourier transform. Alternatively, we propose a numerical algorithm, where the time derivative is computed with the Grünwald-Letnikov expansion, which is a finitedifference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. The calculation requires to store the whole field in the computer memory since anomalous diffusion “remembers the past”.

[1] O. P. Agrawal, Solution for a fractional diffusion-wave equation defined, in a bounded domain. Nonlinear Dynamics 29 (2002), 145-155.10.1023/A:1016539022492Search in Google Scholar

[2] M. Caputo, Linear models of dissipation whose Q is almost frequency, independent-II. Geophysical Journal of the Royal Astronomical Society 3 (1967), 529-539; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1, (2008), 3-14.Search in Google Scholar

[3] M. Caputo, Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, No 4 (2001), 421-442.Search in Google Scholar

[4] M. Caputo, Mathematical modelling of an extreme-event precursor. Accademia delle Scienze di Ferrara 85 (2008), 201-209.Search in Google Scholar

[5] M. Caputo, The convergence of economic developments. Studies in Non Linear Dynamics & Econometrics 16, No 2 (2012), 1558-3708.Search in Google Scholar

[6] M. Caputo, R. Console, A. M. Gabrielov, V. I. Keilis-Borok, T. V. Sidorenko, Long term premonitory seismicity patterns in Italy. Geophysical J. of the Royal Astronomical Society 75, No 1 (1983), 71-77.Search in Google Scholar

[7] M. Caputo, P. Gasperini, V. I. Keilis-Bork, L. Marcelli, I. Rotwain, Earthquake's swarms as forerunners of strong earthquakes in Italy. Annalidi Geofisica 30, No 3-4 (1977), 269-283.10.4401/ag-4823Search in Google Scholar

[8] J. M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Handbook of Geophysical Exploration, Vol. 38, Elsevier (2nd Ed., revised and extended) (2007).Search in Google Scholar

[9] J. M. Carcione, F. Cavallini, F. Mainardi, A. Hanyga, Time-domain seismic modeling of constant Q-wave propagation using fractional derivatives. Pure and Applied Geophysics 159 (2002), 1719-1736.Search in Google Scholar

[10] J. M. Carcione, G. Herman, F. P.E. ten Kroode, Seismic modeling. Geophysics 67 (2002), 1304-1325.10.1190/1.1500393Search in Google Scholar

[11] J. M. Carcione, C. Morency, J. E. Santos, Computational poroelasticity - A review. Geophysics 75 (2010), A229-A243.10.1190/1.3474602Search in Google Scholar

[12] J. M. Carcione, Theory and modeling of constant-Q P- and S-waves using fractional time derivatives. Geophysics 74 (2009), T1-T11.10.1190/1.3008548Search in Google Scholar

[13] F. Cesarone, M. Caputo, C. Cametti, Memory formalism in the passive diffusion across a biological membrane. J. Membrane Science 250 (2005), 79-84.Search in Google Scholar

[14] D. del-Castillo-Negrete, B. A. Carreras, V. E. Lynch, Fractional diffusion in plasma turbulence. Phys. Plasmas 11 (2004), 3854-3864.Search in Google Scholar

[15] K. Diethelm, The Analysis of Fractional Differential Equations. An Application Oriented Exposition using Differential Operators of Caputo Type. Lecture Notes in Mathematics No 2004, Springer, Heidelbereg (2010).10.1007/978-3-642-14574-2_8Search in Google Scholar

[16] M. El-Shahed, A fractional calculus model of semilunar heart valve vibrations. Proceedings of DETC03, Chicago (2003).10.1142/9781848161313_0008Search in Google Scholar

[17] R. Gorenflo, Yu. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, No 4 (1999), 383-414.Search in Google Scholar

[18] A. K. Grünwald, Über “begrenzte” Derivationen und deren Anwendung. Zeitschrift für Angewandte Mathematik und Physik 12 (1867), 441-480.Search in Google Scholar

[19] A. Hanyga, Multidimensional solutions of time-fractional diffusionwave equations. Proc. of the Royal Society of London A458 (2002), 933-957.10.1098/rspa.2001.0904Search in Google Scholar

[20] A. Helmstetter, D. Sornette, J. Grasso, Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws. J. Geophys. Res. 108 (B1) (2003), 2046; doi:10.1029/2002JB001991.10.1029/2002JB001991Search in Google Scholar

[21] G. Iaffaladano, M. Caputo, S. Martino, Experimental and theoretical memory diffusion of water in sand. Hydrology amd Earth System Sciences 10 (2006), 93-100.10.5194/hess-10-93-2006Search in Google Scholar

[22] Z. Jiao, Y. Chen, I. Podlubny, Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. Springer (2012)10.1007/978-1-4471-2852-6Search in Google Scholar

[23] H. Kanamori, E. E. Brodsky, The physics of earthquakes. Rep. Prog. Phys. 67 (2004), 1429-1496.10.1088/0034-4885/67/8/R03Search in Google Scholar

[24] V. I. Keilis-Borok, A. A. Soloviev, Non Linear Dynamics of the Lithosphere and Earthquake Prediction. Springer, Heidelberg (2003).10.1007/978-3-662-05298-3Search in Google Scholar

[25] V. I. Keilis-Borok, A. A. Soloviev, C. B. Allégre, A. N. Sobolevskii, M. D. Intrilligator, Patterns of macroeconomic indicators preceding the unemployment rise in Western Europe and USA. Pattern Recognition 38, No 3 (2005), 423-435.Search in Google Scholar

[26] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).Search in Google Scholar

[27] V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Sci. & Techn., Harlow and J. Wiley & Sons, New York (1994).Search in Google Scholar

[28] J. Kolari, M. Caputo, D. Wagner, Trait recognition: An alternative approach to early warning systems in commercial banking. J. of Business Finance and Accounting 23 (1996), 1415-1434.Search in Google Scholar

[29] A. V. Letnikov, Theory of differentiation of fractional order. Matematiceskij Sbornik 3 (1868), 1-68 (in Russian).Search in Google Scholar

[30] F. Mainardi, Fractional diffusive waves in viscoelastic solids. In: J. L. Wegner and F. R. Norwood (Eds.), IUTAM Sympos. on Nonlinear Waves in Solids, ASME Book No AMR 137, Fairfield - NJ (1995),93-97.Search in Google Scholar

[31] F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons and Fractals 7, No 9 (1996), 1461-1477.Search in Google Scholar

[32] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific Publishing (2010).10.1142/p614Search in Google Scholar

[33] F. Mainardi, A. Mura, G. Pagnini, R. Gorenflo, Time-fractional diffusion of distributed order. J. of Vibration and Control 14 (2008), 1267- 1290.Search in Google Scholar

[34] F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and continuous-time finance II: The waiting-time distribution. Physica A 287 (2000), 468-481.Search in Google Scholar

[35] F. Mainardi, M. Tomirotti, Seismic pulse propagation with constant Q and stable probability distributions. Annali di Geofisica 40 (1997), 1311-1328.Search in Google Scholar

[36] M. Naber, Distributed order fractional subdiffusion. Fractals 12, No 1 (2004), 23-32.Search in Google Scholar

[37] T. Parsons, Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone. J. Geophys. Res. 107, B9 (2002), 2199; doi:10.1029/2001JB000646.10.1029/2001JB000646Search in Google Scholar

[38] Z. Peng, J. E. Vidale, M. Ishii, A. Helmstetter, Seismicity rate immediately before and after main shock rupture from highfrequency waveforms in Japan. J. Geophys. Res. 112 (2007), B03306; doi:10.1029/2006JB004386.10.1029/2006JB004386Search in Google Scholar

[39] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Search in Google Scholar

[40] E. Scalas, R Gorenflo, F. Mainardi, Fractional calculus and continuoustime finance. Physica A: Statistical Mechanics and its Applications 284, No 1 (2000), 376-384.Search in Google Scholar

[41] G. Seriani, E. Priolo, J. M. Carcione, E. Padovani, High-order spectral element method for elastic wave modeling: High-order spectral element method for elastic wave modeling. In: The 62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts (1992), 1285-1288.Search in Google Scholar

[42] D. Sornette, Critical Phenomena in Natural Sciences. Springer Verlag, Heidelberg (2002).Search in Google Scholar

[43] B. Stanković, On the function of E. M. Wright, Publ. de l'lnst. Mathématique, Beograd, Nouvelle Ser. 10, No 24 (1970), 113-124.Search in Google Scholar

[44] T. Utsu, Y. Ogata, R. S. Matsuura, The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43 (1995), 1-33.Search in Google Scholar

Received: 2014-7-8
Published Online: 2015-2-10

© 2015 Diogenes Co., Sofia

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/fca-2015-0014/html
Scroll to top button