Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2018: 1.08

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 18, Issue 1

Issues

Nonlocal Fractional Boundary Value Problems with Slit-Strips Boundary Conditions

Bashir Ahmad
  • Nonlinear Analysis and Applied Mathematics-Research Group (NAAM) King Abdulaziz University P. O. Box 80203, Jeddah 21589, SAUDI ARABIA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sotiris K. Ntouyas
Published Online: 2015-02-10 | DOI: https://doi.org/10.1515/fca-2015-0017

Abstract

In this paper, we study nonlocal boundary value problems of fractional differential equations and inclusions with slit-strips integral boundary conditions. We show the existence and uniqueness of solutions for the single valued case (equations) by means of classical contraction mapping principle while the existence result is obtained via a fixed point theorem due to D. O'Regan. The existence of solutions for the multivalued case (inclusions) is established via nonlinear alternative for contractive maps. The results are well illustrated with the aid of examples.

MSC 2010: Primary 34A08; Secondary 34B10; 34A60

Key Words and Phrases: fractional differential equations; fractional differential inclusions; nonlocal boundary value problems; integral boundary conditions; fixed point theorem

References

  • [1] R. P. Agarwal, D. O'Regan, S. Stanek, Positive solutions for mixed problems of singular fractional differential equations. Math. Nachr. 285 (2012), 27-41.Web of ScienceGoogle Scholar

  • [2] B. Ahmad, R. P. Agarwal, Some new versions of fractional boundary value problems with slit-strips conditions. Bound. Value Probl. 2014 (2014), 175.Web of ScienceGoogle Scholar

  • [3] B. Ahmad, S. K. Ntouyas, Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Article No 20, 19 pp.Google Scholar

  • [4] B. Ahmad, S. K. Ntouyas, A. Alsaedi, A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions. Math. Probl. Eng. 2013 (2013), Article ID 320415, 9 pp.Google Scholar

  • [5] S. Asghar, T. Hayat, B. Ahmad, Acoustic diffraction from a slit in an infinite absorbing sheet. Japan J. Indust. Appl. Math. 13 (1996), 519-532.CrossrefGoogle Scholar

  • [6] Z. B. Bai, W. Sun, Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 63 (2012), 1369-1381.Google Scholar

  • [7] D. Baleanu, O. G. Mustafa, R. P. Agarwal, On Lp-solutions for a class of sequential fractional differential equations. Appl. Math. Comput. 218 (2011), 2074-2081.Google Scholar

  • [8] L. Byszewski, Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494-505.Google Scholar

  • [9] L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40 (1991), 11-19.CrossrefGoogle Scholar

  • [10] A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389 (2012), 403-411.Google Scholar

  • [11] A. Cernea, On the existence of solutions for nonconvex fractional hyperbolic differential inclusions. Commun. Math. Anal. 9, No 1 (2010), 109-120.Google Scholar

  • [12] Y.-K. Chang, J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Modelling 49 (2009), 605-609.Google Scholar

  • [13] K. Deimling, Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, 1992.Google Scholar

  • [14] J. R. Graef, L. Kong, Q. Kong, Application of the mixed monotone operator method to fractional boundary value problems. Fract. Differ. Calc. 2 (2011), 554-567.Google Scholar

  • [15] J. R. Graef, L. Kong, M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 17, No 2 (2014), 499-510; DOI: 10.2478/s13540-014-0182-4; http://link.springer.com/article/10.2478/s13540-014-0182-4.CrossrefGoogle Scholar

  • [16] J. Henderson, A. Ouahab, Fractional functional differential inclusions with finite delay. Nonlinear Anal. 70 (2009), 2091-2105.Google Scholar

  • [17] Sh. Hu, N. Papageorgiou, Handbook of Multivalued Analysis, Theory, I. Kluwer, Dordrecht, 1997.Google Scholar

  • [18] R. A. Hurd, Y. Hayashi, Low-frequency scattering by a slit in a conducting plane. Radio Sci. 15 (1980), 1171-1178.CrossrefGoogle Scholar

  • [19] V. Keyantuo, C. Lizama, A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications. Math. Nach. 284 (2011), 494-506.Google Scholar

  • [20] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006.Google Scholar

  • [21] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.Google Scholar

  • [22] S. Liang, J. Zhang, Existence of multiple positive solutions for mpoint fractional boundary value problems on an infinite interval. Math. Comput. Modelling 54 (2011), 1334-1346.Google Scholar

  • [23] S. P. Lipshitz, T. C. Scott, B. Salvy, On the acoustic impedance of baffled strip radiators. J. Audio Eng. Soc. 43 (1995), 573-580.Google Scholar

  • [24] D. O'Regan, Fixed-point theory for the sum of two operators. Appl. Math. Lett. 9 (1996), 1-8.CrossrefGoogle Scholar

  • [25] D. O'Regan, S. Stanek, Fractional boundary value problems with singularities in space variables. Nonlinear Dynam. 71 (2013), 641-652.CrossrefWeb of ScienceGoogle Scholar

  • [26] T. Otsuki, Diffraction by multiple slits. JOSA A 7 (1990), 646-652.Google Scholar

  • [27] W. V. Petryshyn, P. M. Fitzpatric, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact maps. Trans. Amer. Math. Soc. 194 (1974), 1-25.Google Scholar

  • [28] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.Google Scholar

  • [29] J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht, 2007.Google Scholar

  • [30] X. Su, Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. 74 (2011), 2844-2852.Google Scholar

  • [31] Z. Tomovski, R. Hilfer, H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transforms Spec. Funct. 21 (2010), 797-814.Google Scholar

  • [32] G. Wang, S. Liu, L. Zhang, Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions. Abstr. Appl. Anal. 2014 (2014), Article ID 916260, 6 pp.Google Scholar

About the article

Received: 2014-08-29

Published Online: 2015-02-10


Citation Information: Fractional Calculus and Applied Analysis, Volume 18, Issue 1, Pages 261–280, ISSN (Online) 1314-2224, DOI: https://doi.org/10.1515/fca-2015-0017.

Export Citation

© 2015 Diogenes Co., Sofia.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bashir Ahmad, Ahmed Alsaedi, Sotiris K. Ntouyas, and Hamed H. Al-Sulami
Mathematics, 2019, Volume 7, Number 11, Page 1084
[2]
Bashir Ahmad, Najla Alghamdi, Ahmed Alsaedi, and Sotiris K. Ntouya
Fractional Calculus and Applied Analysis, 2019, Volume 22, Number 3, Page 601
[3]
Teodor M. Atanacković, Marko Janev, and Stevan Pilipović
Applied Mathematics and Computation, 2018, Volume 334, Page 326
[4]
Azmat Ullah Khan Niazi, Jiang Wei, Mujeeb Ur Rehman, and Du Jun
Advances in Difference Equations, 2017, Volume 2017, Number 1
[5]
[6]
Bashir Ahmad, Sotiris K. Ntouyas, Jessada Tariboon, and Ahmed Alsaedi
Mathematical Modelling and Analysis, 2017, Volume 22, Number 2, Page 121
[7]
Ahmed Alsaedi, Sotiris K. Ntouyas, Doa’a Garout, and Bashir Ahmad
Bulletin of the Malaysian Mathematical Sciences Society, 2017
[8]
[9]
Aurelian Cernea
Fractional Calculus and Applied Analysis, 2016, Volume 19, Number 5
[10]
Bashir AHMAD, Sotiris K. NTOUYAS, and Jessada TARIBOON
Acta Mathematica Scientia, 2016, Volume 36, Number 6, Page 1631
[12]
Phollakrit Thiramanus, Sotiris K Ntouyas, and Jessada Tariboon
Advances in Difference Equations, 2016, Volume 2016, Number 1
[13]
Bashir Ahmad, Ravi P Agarwal, and Ahmed Alsaedi
Boundary Value Problems, 2016, Volume 2016, Number 1
[14]
Natthaphong Thongsalee, Sorasak Laoprasittichok, Sotiris K. Ntouyas, and Jessada Tariboon
Open Mathematics, 2015, Volume 13, Number 1
[15]
Phollakrit Thiramanus, Sotiris K Ntouyas, and Jessada Tariboon
Boundary Value Problems, 2015, Volume 2015, Number 1
[16]
Bashir Ahmad, Sotiris K. Ntouyas, and Jessada Tariboon
Mediterranean Journal of Mathematics, 2016, Volume 13, Number 5, Page 2365
[17]
Aphirak Aphithana, Sotiris K Ntouyas, and Jessada Tariboon
Boundary Value Problems, 2015, Volume 2015, Number 1
[18]
Ahmed Alsaedi, Sotiris K Ntouyas, Ravi P Agarwal, and Bashir Ahmad
Advances in Difference Equations, 2015, Volume 2015, Number 1

Comments (0)

Please log in or register to comment.
Log in