Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

6 Issues per year

IMPACT FACTOR 2017: 2.865
5-year IMPACT FACTOR: 3.323

CiteScore 2017: 3.06

SCImago Journal Rank (SJR) 2017: 1.967
Source Normalized Impact per Paper (SNIP) 2017: 1.954

Mathematical Citation Quotient (MCQ) 2017: 0.98

See all formats and pricing
More options …

Pseudo Almost Automorphic Solution of Semilinear Fractional Differential Equations with the Caputo Derivatives

Dingjiang Wang / Zhinan Xia
Published Online: 2015-08-04 | DOI: https://doi.org/10.1515/fca-2015-0056


In this paper, we deal with existence and uniqueness of (μ, ν)-pseudo almost automorphic mild (classical) solution to semilinear fractional differential equations with the Caputo derivatives. The main results are obtained by means of the fixed point theory, Leray-Schauder alternative theorem and fractional powers of operators. Moreover, an application to fractional predator-prey system with diffusion is given.

Keywords : ; ν)-pseudo almost automorphy; fractional differential equation; Caputo derivatives; fractional powers of operators; Leray-Schauder alternative theorem


  • [1] S. Abbas, Pseudo almost automorphic solutions of fractional order neutral differential equation. Semigroup Forum 81, No 3 (2010), 393-404.Web of ScienceCrossrefGoogle Scholar

  • [2] M. Adimy, K. Ezzinbi, C. Marquet, Ergodic and weighted pseudoalmost periodic solutions for partial functional differential equations in fading memory spaces. J. Appl. Math. Comput. 44, No 1-2 (2014), 147-165.Google Scholar

  • [3] R.P. Agarwal, B. de Andrade, C. Cuevas, On type of periodicity and ergodicity to a class of fractional order differential equations. Adv. Difference Equ. 2010 (2010), 1-25.Web of ScienceGoogle Scholar

  • [4] B. Ahmad, J.J. Nieto, Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative. Frac. Calc. Appl. Anal. 15, No 3 (2012), 451-462; DOI: 10.2478/s13540-012-0032-1; http://www.degruyter.com/view/j/fca.2012.15.issue-3/issue-files/fca.2012.15.issue-3.xml.CrossrefGoogle Scholar

  • [5] D. Araya, C. Lizama, Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal. 69, No 11 (2008), 3692-3705.Google Scholar

  • [6] J. Blot, P. Cieutat, K. Ezzinbi, Measure theory and pseudo almost automorphic functions: New developments and applications. Nonlinear Anal. 75, No 4 (2012), 2426-2447.Google Scholar

  • [7] J. Blot, P. Cieutat, K. Ezzinbi, New approach for weighted pseudoalmost periodic functions under the light of measure theory, basic results and applications. Appl. Anal. 92, No 3 (2013), 493-526.CrossrefGoogle Scholar

  • [8] J. Blot, G.M. Mophou, G.M. N’Guérékata, D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations. Nonlinear Anal. 71, No 3-4 (2009), 903-909.Google Scholar

  • [9] S. Bochner, A new approach to almost periodicity. Proc. Natl. Acad. Sci. USA 48, No 12 (1962), 2039-2043.CrossrefGoogle Scholar

  • [10] J.F. Cao, Q.G. Yang, Z.T. Huang, Optimal mild solutions and weighted pseudo-almost periodic classical solutions of fractional integro-differential equations. Nonlinear Anal. 74, No 1 (2011), 224-234.Google Scholar

  • [11] Y.K. Chang, X.X. Luo, Existence of μ-pseudo almost automorphic solutions to a neutral differential equation by interpolation theory. Filomat 28, No 3 (2014), 603-614.Web of ScienceCrossrefGoogle Scholar

  • [12] Y.K. Chang, R. Zhang, G.M. N’Guérékata, Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations. Comput. Math. Appl. 64, No 10 (2012), 3160-3170.CrossrefWeb of ScienceGoogle Scholar

  • [13] C. Cuevas, H.R. Henríquez, H. Soto, Asymptotically periodic solutions of fractional differential equations. Appl. Math. Comput. 236 (2014), 524-545.Google Scholar

  • [14] C. Cuevas, C. Lizama, Almost automorphic solutions to a class of semilinear fractional differential equations. Appl. Math. Lett. 21, No 12 (2008), 1315-1319.CrossrefWeb of ScienceGoogle Scholar

  • [15] C. Cuevas, M. Pierri, A. Sepúlveda, Weighted S-asymptotically ω- periodic solutions of a class of fractional differential equations. Adv. Difference Equ. 2011 (2011), 1-13.Google Scholar

  • [16] C. Cuevas, A. Sepúlveda, H. Soto, Almost periodic and pseudo-almost periodic solutions to fractional differential and integro-differential equations. Appl. Math. Comput. 218, No 5 (2011), 1735-1745.CrossrefGoogle Scholar

  • [17] A. Debbouche, M.M. El-Borai, Weak almost periodic and optimal mild solutions of fractional evolution equations. Electron. J. Differential Equations 2009 (2009), Paper No 46, 1-8.Google Scholar

  • [18] T. Diagana, K. Ezzinbi, M. Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory. Cubo, 16, No 2 (2014), 1-31.Google Scholar

  • [19] H. Ding, J. Liang, T. Xiao, Almost automorphic solutions to abstract fractional differential equations. Adv. Difference Equ. 2010 (2010), 1-9.Google Scholar

  • [20] A. Granas, J. Dugundji J., Fixed Point Theory. Springer-Verlag, New York, (2003).Google Scholar

  • [21] H.R. Henríquez, C. Lizama, Compact almost automorphic solutions to integral equations with infinite delay. Nonlinear Anal. 71, No 12 (2009), 6029-6037.Google Scholar

  • [22] X.X. Luo, Y.L. Wang, Asymptotic behavior of solutions to a nonautonomous semilinear evolution equation. Malaya J. Mat. 2, No 3 (2014), 277-286.Google Scholar

  • [23] G.M. Mophou, Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations. Appl. Math. Comput. 217, No 19 (2011), 7579-7587.Web of ScienceGoogle Scholar

  • [24] G.M. N’Guérékata, Sur les solutions presque automorphes d’équations différentielles abstraites. Ann. Sci. Math. Québec. 5, No 1 (1981), 69-79 Google Scholar

  • [25] G.M. N’Guérékata, Almost Automorphic Functions and Almost Periodic Functions in Abstract Spaces. Kluwer Academic / Plenum Publishers, New York - Berlin - Moscow (2001).Google Scholar

  • [26] G.M. N’Guérékata, Topics in Almost Automorphy. Springer-Verlag, New York (2005).Google Scholar

  • [27] A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).Google Scholar

  • [28] I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).Google Scholar

  • [29] R. Sakthivel, P. Revathi, S. Marshal Anthoni, Existence of pseudo almost automorphic mild solutions to stochastic fractional differential equations. Nonlinear Anal. 75, No 7 (2012), 3339-3347.Google Scholar

  • [30] G.T. Stamov, Almost Periodic Solutions of Impulsive Differential Equations. Springer-Verlag, Berlin (2012).Google Scholar

  • [31] G.T. Stamov, I.M. Stamova, Almost periodic solutions for impulsive fractional differential equations. Dyn. Syst. 29, No 1 (2014), 119-132.CrossrefGoogle Scholar

  • [32] J.R. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12, No 1 (2011), 262-272.Google Scholar

  • [33] Z.N. Xia, Weighted Stepanov-Like pseudoperiodicity and applications. Abstr. Appl. Anal. 2014, (2014), 1-14.Web of ScienceGoogle Scholar

  • [34] Y. Zhao, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, No 3 (2010), 1063-1077. CrossrefGoogle Scholar

About the article

Received: 2014-10-11

Published Online: 2015-08-04

Published in Print: 2015-08-01

Citation Information: Fractional Calculus and Applied Analysis, Volume 18, Issue 4, Pages 951–971, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.1515/fca-2015-0056.

Export Citation

© Diogenes Co., Sofia - frontmatter and editorial.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in