1

Al-Refai M. Luchko Yu. Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications Fract. Calc. Appl. Anal 17 No 2 2014 483 498 DOI: ;CrossrefGoogle Scholar

2

Chechkin A.V. Gorenflo R. Sokolov I.M. Fractional diffusion in inhomogeneous media J. Phys. A, Math. Gen. 38 2005 679 684Google Scholar

3

Chechkin A.V. Gorenflo R. Sokolov I.M. Gonchar V.Yu. Distributed order time fractional diffusion equation Fract. Calc. Appl. Anal. 6 2003 259 279Google Scholar

4

Chechkin A.V. Gorenflo R. Sokolov I.M. Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equations Phys. Rev. E 66 2002 1 7Google Scholar

5

Daftardar-Gejji V. Bhalekar S. Boundary value problems for multi-term fractional differential equations J. Math. Anal. Appl. 345 2008 754 765Google Scholar

6

Feller W. An Introduction to Probability Theory and its Applications Vol. 2 Wiley New York 1966Google Scholar

7

Jiang H. Liu F. Turner I.W. Burrage K. Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain Computers and Math. with Appl. 64 2012 3377 3388Google Scholar

8

Kochubei A.N. General fractional calculus, evolution equations, and renewal processes Integr. Equa. Operator Theory 71 2011 583 600Google Scholar

9

Kochubei A.N. Distributed order calculus and equations of ultraslow diffusion J. Math. Anal. Appl. 340 2008 252 281Google Scholar

10

Li Z. Liu Y. Yamamoto M. Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients Appl. Math. and Computation 257 2015 381 397Google Scholar

11

Li Z. Luchko Yu. Yamamoto M. Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations Fract. Calc. Appl. Anal. 17 No 4 2014 1114 1136 DOI: ;CrossrefWeb of ScienceGoogle Scholar

12

Luchko Yu. Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation Fract. Calc. Appl. Anal. 15 No 1 2012 141 160 DOI: ;CrossrefGoogle Scholar

13

Luchko Yu. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation J. Math. Anal. Appl. 374 2011 538 548Google Scholar

14

Luchko Yu. Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional diffusion equation Comput. Math. Appl. 59 No 5 2010 1766 1772Google Scholar

15

Luchko Yu. Maximum principle for the generalized time-fractional diffusion equation J. Math. Anal. Appl. 351 No 1 2009 218 223Google Scholar

16

Luchko Yu. Boundary value problems for the generalized time-fractional diffusion equation of distributed order Fract. Calc. Appl. Anal. 12 2009 409 422Google Scholar

17

Luchko Yu. Operational method in fractional calculus Fract. Calc. Appl. Anal. 2 1999 463 489Google Scholar

18

Luchko Yu. Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives Acta Math. Vietnam. 24 No 2 1999 207 233Google Scholar

19

Meerschaert M.M. Scheffler H.-P. Stochastic model for ultraslow diffusion Stochastic Process. Appl. 116 2006 1215 1235Google Scholar

20

Metzler R. Jeon J.-H. Cherstvy A. G. Barkai E. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking Phys. Chem. Chem. Phys. 16 201424128Web of ScienceGoogle Scholar

21

Naber M. Distributed order fractional subdiffusion Fractals 12 2004 23 32Google Scholar

22

Protter M.H. Weinberger H.F. Maximum Principles in Differential Equations Springer Berlin 1999Google Scholar

23

Sakamoto K. Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems J. Math. Anal. Appl. 382 No 1 2011 426 447Google Scholar

24

Samko S.G. Kilbas A.A. Marichev O.I. Fractional Integrals and Derivatives: Theory and Applications Gordon and Breach Yverdon 1993Google Scholar

25

Schilling R.L. Song R. Vondracek Z. Bernstein Functions. Theory and Application De Gruyter Berlin 2010Google Scholar

26

Schneider W.R. Wyss W. Fractional diffusion and wave equations J. Math. Phys. 30 1989 134 144Google Scholar

27

Sokolov I.M. Chechkin A.V. Klafter J. Distributed-order fractional kinetics Acta Phys. Polon. B 35 2004 1323 1341Google Scholar

28

Suzuki A. Niibori Y. Fomin S.A. Chugunov V.A. Hashida T. Prediction of reinejction effects in fault-related subsidiary structures by using fractional derivative-based mathematical models for sustainable design of geothermal reservoirs Geothermics 57 2015 196 204Google Scholar

29

Suzuki A. Niibori Y. Fomin S.A. Chugunov V.A. Hashida T. Analysis of water injection in fractured reservoirs using a fractional-derivative-based mass and heat transfer model Mathematical Geosciences 47 2014 31 49Google Scholar

30

Umarov S. Gorenflo R. Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations Z. Anal. Anwend. 24 2005 449 466Google Scholar

31

Vladimirov V.S. Equations of Mathematical Physics Nauka Moscow 1971Google Scholar

32

Walter W. On the strong maximum principle for parabolic differential equations Proc. Edinb. Math. Soc. 29 1986 93 96Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.