[1]

E. T. Bell, Exponential polynomials. *Ann. Math*. **35**, No 2 (1934), 258–277.

[2]

S. Chakraborty, S. H. Ong, Mittag-Leffler function distribution - A new generalization of hyper-Poisson distribution. *arXiv:1411.0980 [math.ST]* (2014).

[3]

G. Dobinski, Summirung der Reihe Σ *n*_{m}/*n*! für *m* = 1,2,3,4,5, ... . *Grunert Archiv (Arch. Math. Phys.)* **61** (1877), 333–336.

[4]

R. Garra, E. Orsingher, Random flights governed by Klein-Gordon-type partial differential equations. *Stoch. Proc. Appl*. **124** (2014), 2171–2187; [Crossref].

[5]

R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, *Mittag-Leffler Functions, Related Topics and Applications*. Springer, Berlin (2014).

[6]

R. Gorenflo, F. Mainardi, On the fractional Poisson process and the discretized stable subordinator. *Axioms* **4** (2015), 321–344; [Crossref].

[7]

H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications. *Journal of Applied Mathemathics* **2011** (2011), Article ID 298628; [Crossref].

[8]

A. A. Kilbas, A. A. Koroleva, S. S. Rogosin, Multi-parameter Mittag-Leffler functions and their extension. *Fract. Calc. Appl. Anal*. **16**, No 2 (2013), 378–404; [Crossref]; http://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.

[9]

V. Kiryakova, Multi-indexed Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type transforms. *Fract. Calc. Appl. Anal*. **2**, No 4 (1999), 445–462.

[10]

N. Laskin, Fractional Poisson process. *Commun. Nonlin. Sci. Num. Sim*. **8** (2003), 201–213; [Crossref].

[11]

N. Laskin, Some applications of the fractional Poisson probability distribution. *J. Math. Phys*. **50** (2009), 113513; [Crossref].

[12]

F. Mainardi, R. Gorenflo, E. Scalas, A fractional generalization of the Poisson processes. *Vietnam Journal of Mathematics* **32**, SI (2004), 53–64; E-print http://arxiv.org/abs/math/0701454.

[13]

M. M. Meerschaert, D. A. Benson, B. Bäumer, Multidimensional advection and fractional dispersion. *Phys. Rev. E* **59** (1999), 5026; [Crossref].

[14]

M. M. Meerschaert, E. Nane, P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, *Electronic Journal of Probability* **16**, No 59 (2011), 1600–1620; see also arXiv:1007.5051[math.PR].

[15]

R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. *Phys. Rep*. **339** (2000), 1–77; [Crossref].

[16]

M. G. Mittag-Leffler, Sur la nouvelle function *E*_{α}(*x*). *Comptes Rendus Acad. Sci. Paris* **137** (1903), 554–558.

[17]

J. D. Murray, *Mathematical Biology I: An Introduction*. 3th Ed., Springer, Berlin (2008).

[18]

I. Podlubny, *Fractional Differential Equations*. Academic Press, Boston (1999).

[19]

M. Politi, T. Kaizoji, E. Scalas, Full characterization of the fractional Poisson process. *EPL* **96** (2011), 20004; [Crossref].

[20]

O. N. Repin, A. I. Saichev, Fractional Poisson law. *Radiophys. Quant. Electron*. **43** (2000), 738–741; [Crossref].

[21]

S. Roman, ”The Exponential Polynomials” and ”The Bell Polynomials”, 4.1.3 and 4.1.8. In: *The Umbral Calculus*. Academic Press, New York (1984), 63–67 and 82–87.

[22]

S. G. Samko, A. A. Kilbas, O. I. Marichev, *Fractional Integrals and Derivatives*. Gordon and Breach, Yverdon (1993); Transl. and extended from the 1987 Russian original.

[23]

J. M. Sixdeniers, K. A. Penson, A. I. Solomon, Mittag-Leffler coherent states. *J. Phys. A.: Math. Gen*. **32** (1999), 7543; [Crossref].

[24]

J. Stirling, *Methodus differentialis, Sive tractatus de summatione et interpolatione serierum infinitarium*, London (1730); English transl. by J. Holliday, *The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series* (1749).

[25]

V. V. Uchaikin, D. O. Cahoy, R. T. Sibatov, Fractional processes: from Poisson to branching one. *Int. J. Bifurcation Chaos* **18**, No 9 (2008), 2717–2725; [Crossref]; arXiv:1002.2511v1.

[26]

G. C. Wick, The evaluation of the collision matrix. *Phys. Rev*. **80** (1950), 268; [Crossref].

[27]

A. Wiman, Über den Fundamentalsatz in der Theorie der Funktionen *E*_{α}(x). *Acta Math*. **29** (1905), 191–201; [Crossref].

## Comments (0)