Jump to ContentJump to Main Navigation
Show Summary Details

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

6 Issues per year


IMPACT FACTOR increased in 2015: 2.246
Rank 10 out of 312 in category Mathematics, 9 out of 254 in Applied Mathematics and 15 out of 101 in Mathematics, Interdisciplinary Applications in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 1.602
Source Normalized Impact per Paper (SNIP) 2015: 1.404
Impact per Publication (IPP) 2015: 2.218

Mathematical Citation Quotient (MCQ) 2015: 0.61

Online
ISSN
1314-2224
See all formats and pricing

Generalization of the fractional poisson distribution

Richard Herrmann
  • GigaHedron, Berliner Ring 80 D - 63303 Dreieich, Germany
  • Email:
Published Online: 2016-08-27 | DOI: https://doi.org/10.1515/fca-2016-0045

Abstract

A generalization of the Poisson distribution based on the generalized Mittag-Leffler function Eα,β(λ) is proposed and the raw moments are calculated algebraically in terms of Bell polynomials. It is demonstrated, that the proposed distribution function contains the standard fractional Poisson distribution as a subset. A possible interpretation of the additional parameter β is suggested.

MSC 2010: Primary 26A33; Secondary 33E12, 60EXX, 11B73

Key Words and Phrases: fractional calculus; Mittag-Leffler functions; fractional Poisson distribution; Bell polynomials; Stirling numbers

References

  • [1]

    E. T. Bell, Exponential polynomials. Ann. Math. 35, No 2 (1934), 258–277.

  • [2]

    S. Chakraborty, S. H. Ong, Mittag-Leffler function distribution - A new generalization of hyper-Poisson distribution. arXiv:1411.0980 [math.ST] (2014).

  • [3]

    G. Dobinski, Summirung der Reihe Σ nm/n! für m = 1,2,3,4,5, ... . Grunert Archiv (Arch. Math. Phys.) 61 (1877), 333–336.

  • [4]

    R. Garra, E. Orsingher, Random flights governed by Klein-Gordon-type partial differential equations. Stoch. Proc. Appl. 124 (2014), 2171–2187; [Crossref].

  • [5]

    R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014).

  • [6]

    R. Gorenflo, F. Mainardi, On the fractional Poisson process and the discretized stable subordinator. Axioms 4 (2015), 321–344; [Crossref].

  • [7]

    H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications. Journal of Applied Mathemathics 2011 (2011), Article ID 298628; [Crossref].

  • [8]

    A. A. Kilbas, A. A. Koroleva, S. S. Rogosin, Multi-parameter Mittag-Leffler functions and their extension. Fract. Calc. Appl. Anal. 16, No 2 (2013), 378–404; [Crossref]; http://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.

  • [9]

    V. Kiryakova, Multi-indexed Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type transforms. Fract. Calc. Appl. Anal. 2, No 4 (1999), 445–462.

  • [10]

    N. Laskin, Fractional Poisson process. Commun. Nonlin. Sci. Num. Sim. 8 (2003), 201–213; [Crossref].

  • [11]

    N. Laskin, Some applications of the fractional Poisson probability distribution. J. Math. Phys. 50 (2009), 113513; [Crossref].

  • [12]

    F. Mainardi, R. Gorenflo, E. Scalas, A fractional generalization of the Poisson processes. Vietnam Journal of Mathematics 32, SI (2004), 53–64; E-print http://arxiv.org/abs/math/0701454.

  • [13]

    M. M. Meerschaert, D. A. Benson, B. Bäumer, Multidimensional advection and fractional dispersion. Phys. Rev. E 59 (1999), 5026; [Crossref].

  • [14]

    M. M. Meerschaert, E. Nane, P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, Electronic Journal of Probability 16, No 59 (2011), 1600–1620; see also arXiv:1007.5051[math.PR].

  • [15]

    R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77; [Crossref].

  • [16]

    M. G. Mittag-Leffler, Sur la nouvelle function Eα(x). Comptes Rendus Acad. Sci. Paris 137 (1903), 554–558.

  • [17]

    J. D. Murray, Mathematical Biology I: An Introduction. 3th Ed., Springer, Berlin (2008).

  • [18]

    I. Podlubny, Fractional Differential Equations. Academic Press, Boston (1999).

  • [19]

    M. Politi, T. Kaizoji, E. Scalas, Full characterization of the fractional Poisson process. EPL 96 (2011), 20004; [Crossref].

  • [20]

    O. N. Repin, A. I. Saichev, Fractional Poisson law. Radiophys. Quant. Electron. 43 (2000), 738–741; [Crossref].

  • [21]

    S. Roman, ”The Exponential Polynomials” and ”The Bell Polynomials”, 4.1.3 and 4.1.8. In: The Umbral Calculus. Academic Press, New York (1984), 63–67 and 82–87.

  • [22]

    S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993); Transl. and extended from the 1987 Russian original.

  • [23]

    J. M. Sixdeniers, K. A. Penson, A. I. Solomon, Mittag-Leffler coherent states. J. Phys. A.: Math. Gen. 32 (1999), 7543; [Crossref].

  • [24]

    J. Stirling, Methodus differentialis, Sive tractatus de summatione et interpolatione serierum infinitarium, London (1730); English transl. by J. Holliday, The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series (1749).

  • [25]

    V. V. Uchaikin, D. O. Cahoy, R. T. Sibatov, Fractional processes: from Poisson to branching one. Int. J. Bifurcation Chaos 18, No 9 (2008), 2717–2725; [Crossref]; arXiv:1002.2511v1.

  • [26]

    G. C. Wick, The evaluation of the collision matrix. Phys. Rev. 80 (1950), 268; [Crossref].

  • [27]

    A. Wiman, Über den Fundamentalsatz in der Theorie der Funktionen Eα(x). Acta Math. 29 (1905), 191–201; [Crossref].

About the article

Received: 2015-03-10

Published Online: 2016-08-27

Published in Print: 2016-08-01


Citation Information: Fractional Calculus and Applied Analysis, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.1515/fca-2016-0045. Export Citation

Comments (0)

Please log in or register to comment.
Log in