[1]

L. Aceto and P. Novati, Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. *SIAM J. Scientific Computing* **39**, No 1 (2017), A214–A228; doi: 10.1137/16M1064714.CrossrefGoogle Scholar

[2]

M.G. Armentano, The effect of reduced integration in the Steklov eigenvalue problem. *ESAIM: Mathematical Modelling and Numerical Analysis* **38**, No 1 (2004), 27–36; doi: 10.1051/m2an:2004002.CrossrefGoogle Scholar

[3]

I. Babuska and J. Osborn, Eigenvalue problems. In: *Handbook of Numerical Analysis* Vol. **2**, North-Holland, Amsterdam (1991), 641–787.Google Scholar

[4]

A. Bonito and J. Pasciak, Numerical approximation of fractional powers of elliptic operators. *Mathematics of Computation* **84**, No 295 (2015), 2083–2110; DOI: 10.1090/S0025-5718-2015-02937-8.Web of ScienceCrossrefGoogle Scholar

[5]

A. Bueno-Orovio, D. Kay, and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations. *BIT Numerical Mathematics* **54**, No 4 (2014), 1–18; doi:10.1007/s10543-014-0484-2.CrossrefGoogle Scholar

[6]

K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. *SIAM Journal on Scientific Computing* **34**, No 4 (2012), A2145–A2172; DOI:10.1137/110847007.Web of ScienceCrossrefGoogle Scholar

[7]

I. Gavrilyuk, W. Hackbusch, and B. Khoromskij, Data-sparse approximation to the operator-valued functions of elliptic operator. *Mathematics of Computation* **73**, No 247 (2004), 1297–1324; doi: http://www.jstor.org/stable/4099897.Google Scholar

[8]

I. Gavrilyuk, W. Hackbusch, and B. Khoromskij, Data-sparse approximation to a class of operator-valued functions. *Mathematics of Computation* **74**, No 250 (2005), 681–708; doi: 10.1090/S0025-5718-04-01703-X.CrossrefGoogle Scholar

[9]

S. Harizanov, R. Lazarov, P. Marinov, S. Margenov, and Y. Vutov, Optimal solvers for linear systems with fractional powers of sparse SPD matrices. Submitted to: *Numerical Linear Algebra with Applications*, posted as arXiv:1612.04846v1.

[10]

N.J. Higham, *Functions of Matrices: Theory and Computation*. SIAM, Philadelphia (2008).Google Scholar

[11]

M. Ilić, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation.I. *Fract. Calc. Appl. Anal.* **8**, No 3 (2005), 323–341; at http://www.math.bas.bg/∼fcaa.

[12]

M. Ilić, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, II. With nonhomogeneous boundary conditions. *Fract. Calc. Appl. Anal.* **9**, No 4 (2006), 333–349; at http://www.math.bas.bg/∼fcaa.

[13]

M. Ilić, I.W. Turner, and V. Anh, A numerical solution using an adaptively preconditioned Lanczos method for a class of linear systems related with the fractional Poisson equation. *Intern. J. of Stochastic Analysis* (2008), 1–26, Article ID 104525.Google Scholar

[14]

A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, *Theory and Applications of Fractional Differential Equations*. North-Holland Math. Studies, Elsevier, Amsterdam (2006).Google Scholar

[15]

M.A. Krasnoselskii, P.P. Zabreiko, E.I. Pustylnik, and P.E. Sobolevskii, *Integral Operators in Spaces of Summable Functions*. Noordhoff International Publishing (1976).Google Scholar

[16]

R. Metzler, J.H. Jeon, A.G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. *Physical Chemistry Chemical Physics* **16**, No 44 (2014), 24128–24164; doi: 10.1039/c4cp03465a.CrossrefGoogle Scholar

[17]

I. Podlubny, *Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications*. Mathematics in Science and Engineering, Vol. 198, Academic Press (1998).Google Scholar

[18]

A.A. Samarskii, *The Theory of Difference Schemes*. Marcel Dekker, New York (2001).Google Scholar

[19]

V. Thomée, *Galerkin Finite Element Methods for Parabolic Problems*. Springer Ser. in Computational Mathematics, Vol. 25, Springer (2006).Google Scholar

[20]

P.N. Vabishchevich, Numerically solving an equation for fractional powers of elliptic operators. *Journal of Computational Physics* **282**, No 1 (2015), 289–302; doi: 10.1016/j.jcp.2014.11.02.CrossrefWeb of ScienceGoogle Scholar

[21]

P.N. Vabishchevich, Numerical solution of nonstationary problems for a space-fractional diffusion equation. *Fract. Calc. Appl. Anal.* **19**, No 1 (2016), 116–139; DOI: 10.1515/fca-2016-0007; at https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.Crossref

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.