Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

IMPACT FACTOR 2017: 2.865
5-year IMPACT FACTOR: 3.323

CiteScore 2017: 3.06

SCImago Journal Rank (SJR) 2017: 1.967
Source Normalized Impact per Paper (SNIP) 2017: 1.954

Mathematical Citation Quotient (MCQ) 2017: 0.98

See all formats and pricing
More options …
Volume 20, Issue 6

On generalized boundary value problems for a class of fractional differential inclusions

Irene Benedetti / Valeri Obukhovskii
  • Faculty of Physics and Mathematics, Voronezh State Pedagogical University, 394043 Voronezh, Russia
  • The RUDN University, 117198 Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valentina Taddei
  • Dipartimento di Scienze e Metodi per l’Ingegneria, Università di Modena e Reggio Emilia, I–42122 Reggio Emilia, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/fca-2017-0075


We prove existence of mild solutions to a class of semilinear fractional differential inclusions with non local conditions in a reflexive Banach space. We are able to avoid any kind of compactness assumptions both on the nonlinear term and on the semigroup generated by the linear part. We apply the obtained theoretical results to two diffusion models described by parabolic partial integro-differential inclusions.

MSC 2010: Primary 34A08; 34G20; 34B10; Secondary 54C60; 35K91; 54C08

Key Words and Phrases: nonlocal conditions; fixed point theorem; fractional derivative


  • [1]

    M. Abu Hamed, A.A. Nepomnyashchy, Domain coarsening in a subdiffusive Allen-Cahn equation. Phys. D 308 (2015), 52–58; .CrossrefGoogle Scholar

  • [2]

    B. Amhad, J. Nieto, Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations. Abstr. Appl. Anal. 2009 (2009), 9 pp.; .CrossrefWeb of ScienceGoogle Scholar

  • [3]

    E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, No 1 (2007), 542–553; .CrossrefWeb of ScienceGoogle Scholar

  • [4]

    M. Alipour, L. Beghin, D. Rostamy, Generalized fractional nonlinear birth processes. Methodol. Comput. Appl. Probab. 17, No 3 (2015), 525–540; .CrossrefWeb of ScienceGoogle Scholar

  • [5]

    C.T. Anh, T.D. Ke, On nonlocal problems for retarded fractional differential equations in Banach spaces. Fixed Point Theory 15, No 2 (2014), 373–392.Google Scholar

  • [6]

    I. Benedetti, L. Malaguti, V. Taddei, Nonlocal semilinear evolution equations without strong compactness: theory and applications. Bound. Value Probl. 60 (2013), 18 pp.; .CrossrefWeb of ScienceGoogle Scholar

  • [7]

    I. Benedetti, V. Obukovskii, V. Taddei, On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space. J. Funct. Sp. 2015 (2015), 1–10; .CrossrefWeb of ScienceGoogle Scholar

  • [8]

    I. Benedetti, V. Taddei, M. Väth, Evolution problems with nonlinear nonlocal boundary conditions. J. Dyn. Diff. Equat. 25, No 2 (2013), 477–503; .CrossrefGoogle Scholar

  • [9]

    S. Bochner, A.E. Taylor, Linear functionals on certain spaces of abstractly-valued functions. Ann. Math. 39, No 4 (1938), 913–944; .CrossrefGoogle Scholar

  • [10]

    L. Byszewski, Theorems about the existence and uniquencess of a solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, No 2 (1991), 494–505; .CrossrefGoogle Scholar

  • [11]

    A. Cernea, A note on the existence of solutions for some boundary value problems of fractional differential inclusions. Fract. Calc. Appl. Anal. 15, No 2 (2012), 183–194; ; https://www.degruyter.com/view/j/fca.2012.15.issue-2/s13540-012-0013-4/s13540-012-0013-4.xml.CrossrefWeb of Science

  • [12]

    A. Cernea, A note on mild solutions for nonconvex fractional semilinear differential inclusion. Ann. Acad. Rom. Sci. Ser. Math. Appl. 5, No 1-2 (2013), 35–45.Google Scholar

  • [13]

    K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179 (1993), 630–637.CrossrefGoogle Scholar

  • [14]

    Y. Ding, H. Ye, A fractional-order differential equation model of HIV infection of CD4C T-cells. Mathematical and Computer Modelling 50, No 3-4 (2009), 386–392; .CrossrefGoogle Scholar

  • [15]

    M.M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solit. Fract. 14, No 3 (2002), 433–440; .CrossrefGoogle Scholar

  • [16]

    K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38, No 2 (1952), 121–126.CrossrefGoogle Scholar

  • [17]

    J. García-Falset, S. Reich, Integral solutions to a class of nonlocal evolution equations. Comm. Contemp. Math. 12, No 6 (2010), 1032–1054; .CrossrefGoogle Scholar

  • [18]

    L.I. Glicksberg, A further generalization of the Kakutani fixed theorem with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952), 170–174; .CrossrefGoogle Scholar

  • [19]

    A. Hanyga, Multidimensional solutions of space-fractional diffusion equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, No 2016 (2001), 2993–3005; .CrossrefGoogle Scholar

  • [20]

    M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Ser. in Nonlinear Analysis and Applications # 7, Walter de Gruyter, Berlin - New York (2001).Google Scholar

  • [21]

    L.V. Kantorovich, G.P. Akilov, Functional Analysis. Pergamon Press, Oxford (1982).Google Scholar

  • [22]

    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North Holland Mathematics studies # 204, Elsevier (2006).Google Scholar

  • [23]

    K. Li, J. Peng, J. Gao, Existence results for semilinear fractional differential equations via Kuratowski measure of noncompactness, Fract. Calc. Appl. Anal. 15, No 4 (2012), 591–610; ; https://www.degruyter.com/view/j/fca.2012.15.issue-4/s13540-012-0041-0/s13540-012-0041-0.xml.CrossrefWeb of Science

  • [24]

    X. Liu, Z. Liu, On the bang-bang principle for a class of fractional semilinear evolution inclusions. Proc. Roy. Soc. Ed. A 144, No 2 (2014), 333–349; https://doi.org/10.1017/S030821051200128X.Web of ScienceCrossref

  • [25]

    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publ., John Wiley and Sons, Inc., New York (1993).Google Scholar

  • [26]

    A. Paicu, I.I. Vrabie, A class of nonlinear evolution equations subjected to nonlocal initial conditions. Nonl. Anal. 72, No 11 (2010), 4091–4100; .CrossrefGoogle Scholar

  • [27]

    B.J. Pettis, On the integration in vector spaces. Trans. Amer. Math. Soc. 44, No 2 (1938), 277–304.CrossrefGoogle Scholar

  • [28]

    I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering # 198, Academic Press, Inc., San Diego (1999).Google Scholar

  • [29]

    I.I. Vrabie, C0-Semigroups and Applications North-Holland Math. Studies # 191, North-Holland Publishing Co., Amsterdam (2003).Google Scholar

  • [30]

    J. Wang, M. Feckan, Y. Zhou, A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, No 4 (2016), 806–831; ; https://www.degruyter.com/view/j/fca.2016.19.issue-4/fca-2016-0044/fca-2016-0044.xml.Crossref

  • [31]

    J. Wang, A.G. Ibrahim, M. Feckan, Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces. Appl. Math. Comp. 257 (2015), 103–118; .CrossrefWeb of ScienceGoogle Scholar

  • [32]

    J.Y. Yang, J.F. Huang, D.M. Liang, Y.F. Tang, Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38, No 14 (2014), 3652–3661; .CrossrefWeb of ScienceGoogle Scholar

  • [33]

    Z. Zhang, B. Liu, Existence of mild solutions for fractional evolution equations. Fixed Point Theory 15, No 1 (2014), 325–334.Google Scholar

  • [34]

    Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comp. Math. Appl. 59, No 3 (2010), 1063–1077; .CrossrefGoogle Scholar

About the article

Received: 2017-04-30

Published Online: 2017-12-29

Published in Print: 2017-12-20

Citation Information: Fractional Calculus and Applied Analysis, Volume 20, Issue 6, Pages 1424–1446, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.1515/fca-2017-0075.

Export Citation

© 2017 Diogenes Co., Sofia.Get Permission

Comments (0)

Please log in or register to comment.
Log in