[1]

A. Bernardis, E. Dalmasso, G. Pradolini, Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces. *Ann. Acad. Sci. Fenn. Math*. **39**, No 1 (2014), 23–50; .CrossrefWeb of ScienceGoogle Scholar

[2]

A. Bernardis, S. Hartzstein, G. Pradolini, Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type. *J. Math. Anal. Appl*. **322**, No 2 (2006), 825–846; .CrossrefGoogle Scholar

[3]

A.L. Bernardis, M. Lorente, M.S. Riveros, Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions. *Math. Inequal. Appl*. **14**, No 4 (2011), 881–895; .CrossrefGoogle Scholar

[4]

M. Bramanti, M.C. Cerutti, Commutators of singular integrals and fractional integrals on homogeneous spaces. In: *Harmonic Analysis and Operator Theory 189*, *Contemp. Math. Series*, Amer. Math. Soc., Providence, RI (1995), 81–94; .CrossrefGoogle Scholar

[5]

M. Bramanti, M.C. Cerutti, M. Manfredini, *L*^{p} estimates for some ultraparabolic operators with discontinuous coefficients. *J. Math. Anal. Appl*. **200**, No 2 (1996), 332–354, .CrossrefGoogle Scholar

[6]

S. Chanillo, A note on commutators. *Indiana Univ. Math. J*. **31**, No 1 (1982), 7–16; .CrossrefGoogle Scholar

[7]

S. Chanillo, D.K. Watson, R.L. Wheeden, Some integral and maximal operators related to starlike sets. *Studia Math*. **107**, No 3 (1993), 223–255; .CrossrefGoogle Scholar

[8]

F. Chiarenza, M. Frasca, P. Longo, Interior *W*^{2,p} estimates for nondivergence elliptic equations with discontinuous coefficients. *Ricerche Mat*. **40**, No 1 (1991), 149–168.Google Scholar

[9]

F. Chiarenza, M. Frasca, P. Longo, *W*^{2,p}-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. *Trans. Amer. Math. Soc*. **336**, No 2 (1993), 841–853; .CrossrefGoogle Scholar

[10]

D. Cruz-Uribe, A. Fiorenza, Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. *Publ. Mat*. **47**, No 1 (2003), 103–131; .CrossrefGoogle Scholar

[11]

E. Dalmasso, G. Pradolini, Characterizations of the boundedness of generalized fractional maximal functions and related operators in Orlicz spaces. *Math. Nach*. **290**, No 1 (2017), 19–36; .CrossrefGoogle Scholar

[12]

L. Diening, M. Růžička, Calderón-Zygmund operators on generalized Lebesgue spaces *L*^{p(·)} and problems related to fluid dynamics. *J. Reine Angew. Math*. **563** (2003), 197–220; .CrossrefGoogle Scholar

[13]

Y. Ding, S. Lu, Weighted norm inequalities for fractional integral operators with rough kernel. *Canad. J. Math*. **50**, No 1 (1998), 29–39; .CrossrefGoogle Scholar

[14]

Y. Ding, S. Lu, P. Zhang, Weak estimates for commutators of fractional integral operators. *Sci. China Ser. A* **44**, No 7 (2001), 877–888; .CrossrefGoogle Scholar

[15]

J. García-Cuerva, J.L.R. de Francia, *Weighted Norm Inequalities and Related Topics*. Ser. North-Holland Math. Studies # 116, North-Holland Publ. Co., Amsterdam (1985).Google Scholar

[16]

J. García-Cuerva, E. Harboure, C. Segovia, J.L. Torrea, Weighted norm inequalities for commutators of strongly singular integrals. *Indiana Univ. Math. J*. **40**, No 4 (1991), 1397–1420; .CrossrefGoogle Scholar

[17]

O. Gorosito, G. Pradolini, O. Salinas, Weighted weak-type estimates for multilinear commutators of fractional integrals on spaces of homogeneous type. *Acta Math. Sin. (Engl. Ser.)* **23**, No 10 (2007), 1813–1826; .CrossrefGoogle Scholar

[18]

E. Harboure, O. Salinas, B. Viviani, Orlicz boundedness for certain classical operators. *Colloq. Math*. **91**, No 2 (2002), 263–282; .CrossrefGoogle Scholar

[19]

E. Harboure, C. Segovia, J.L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of *p*. *Illinois J. Math*. **41**, No 4 (1997), 676–700.Google Scholar

[20]

G.H. Hardy, J.E. Littlewood, Some properties of fractional integrals, II. *Math. Z*. **34**, No 1 (1932), 403–439; .CrossrefGoogle Scholar

[21]

F. John, L. Nirenberg, On functions of bounded mean oscillation. *Comm. Pure Appl. Math*. **14** (1961), 415–426; .CrossrefGoogle Scholar

[22]

A.Y. Karlovich, A.K. Lerner, Commutators of singular integrals on generalized *L*^{p} spaces with variable exponent. *Publ. Mat*. **49**, No 1 (2005), 111–125; .CrossrefGoogle Scholar

[23]

D.S. Kurtz, Sharp function estimates for fractional integrals and related operators. *J. Austral. Math. Soc. Ser. A* **49**, No 1 (1990), 129–137.CrossrefGoogle Scholar

[24]

M. Lorente, J.M. Martell, M.S. Riveros, A. de la Torre, Generalized Hörmander’s conditions, commutators and weights. *J. Math. Anal. Appl*. **342**, No 2 (2008), 1399–1425; .CrossrefGoogle Scholar

[25]

Y. Meng, D. Yang, Boundedness of commutators with Lipschitz functions in non-homogeneous spaces. *Taiwanese J. Math*. **10**, No 6 (2006), 1443–1464.CrossrefGoogle Scholar

[26]

B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for fractional integrals. *Trans. Amer. Math. Soc*. **192** (1974), 261–274.CrossrefGoogle Scholar

[27]

C. Pérez, Endpoint estimates for commutators of singular integral operators. *J. Funct. Anal*. **128**, No 1 (1995), 163–185; .CrossrefGoogle Scholar

[28]

C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. *J. Fourier Anal. Appl*. **3**, No 6 (1997), 743–756; .CrossrefGoogle Scholar

[29]

C. Pérez, G. Pradolini, R.H. Torres, R. Trujillo-González, End-point estimates for iterated commutators of multilinear singular integrals. *Bull. Lond. Math. Soc*. **46**, No 1 (2014), 26–42; .CrossrefWeb of ScienceGoogle Scholar

[30]

G. Pradolini, Two-weighted norm inequalities for the fractional integral operator between *L*^{p} and Lipschitz spaces. *Comment. Math. (Prace Mat.)* **41** (2001), 147–169.Google Scholar

[31]

G.G. Pradolini, W.A. Ramos, Characterization of Lipschitz functions via the commutators of singular and fractional integral operators in variable Lebesgue spaces. *Potential Anal*. **46**, No 3 (2017), 499–525; .CrossrefWeb of ScienceGoogle Scholar

[32]

G. Pradolini, O. Salinas, The fractional integral between weighted Orlicz and BMO_{ϕ} spaces on spaces of homogeneous type. *Comment. Math. Univ. Carolin*. **44**, No 3 (2003), 469–487.Google Scholar

[33]

C. Rios, The *L*^{p} Dirichlet problem and nondivergence harmonic measure. *Trans. Amer. Math. Soc*. **355**, No 2 (2003), 665–687; .CrossrefGoogle Scholar

[34]

C. Segovia, J.L. Torrea, Weighted inequalities for commutators of fractional and singular integrals. *Publ. Mat*. **35**, No 1 (1991), 209–235; .CrossrefGoogle Scholar

[35]

E.M. Stein, G. Weiss, Fractional integrals on *n*-dimensional Euclidean space. *J. Math. Mech*. **7** (1958), 503–514.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.