Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia

IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2017: 0.98

See all formats and pricing
More options …
Volume 21, Issue 3


The effect of the smoothness of fractional type operators over their commutators with Lipschitz symbols on weighted spaces

Estefanía Dalmasso
  • Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ Predio Dr. Alberto Cassano del CCT-CONICET-Santa Fe Colectora Ruta Nacional N o168, Santa Fe, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gladis Pradolini / Wilfredo Ramos
Published Online: 2018-07-12 | DOI: https://doi.org/10.1515/fca-2018-0034


We prove boundedness results for integral operators of fractional type and their higher order commutators between weighted spaces, including Lp-Lq, Lp-BMO and Lp-Lipschitz estimates. The kernels of such operators satisfy certain size condition and a Lipschitz type regularity, and the symbol of the commutator belongs to a Lipschitz class. We also deal with commutators of fractional type operators with less regular kernels satisfying a Hörmander’s type inequality. As far as we know, these last results are new even in the unweighted case. Moreover, we give a characterization result involving symbols of the commutators and continuity results for extreme values of p.

MSC 2010: Primary 42B25; Secondary 42B35

Key Words and Phrases: fractional calculus operators; commutators; Lipschitz symbols; weights


  • [1]

    A. Bernardis, E. Dalmasso, G. Pradolini, Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces. Ann. Acad. Sci. Fenn. Math. 39, No 1 (2014), 23–50; .CrossrefWeb of ScienceGoogle Scholar

  • [2]

    A. Bernardis, S. Hartzstein, G. Pradolini, Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type. J. Math. Anal. Appl. 322, No 2 (2006), 825–846; .CrossrefGoogle Scholar

  • [3]

    A.L. Bernardis, M. Lorente, M.S. Riveros, Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions. Math. Inequal. Appl. 14, No 4 (2011), 881–895; .CrossrefGoogle Scholar

  • [4]

    M. Bramanti, M.C. Cerutti, Commutators of singular integrals and fractional integrals on homogeneous spaces. In: Harmonic Analysis and Operator Theory 189, Contemp. Math. Series, Amer. Math. Soc., Providence, RI (1995), 81–94; .CrossrefGoogle Scholar

  • [5]

    M. Bramanti, M.C. Cerutti, M. Manfredini, Lp estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200, No 2 (1996), 332–354, .CrossrefGoogle Scholar

  • [6]

    S. Chanillo, A note on commutators. Indiana Univ. Math. J. 31, No 1 (1982), 7–16; .CrossrefGoogle Scholar

  • [7]

    S. Chanillo, D.K. Watson, R.L. Wheeden, Some integral and maximal operators related to starlike sets. Studia Math. 107, No 3 (1993), 223–255; .CrossrefGoogle Scholar

  • [8]

    F. Chiarenza, M. Frasca, P. Longo, Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients. Ricerche Mat. 40, No 1 (1991), 149–168.Google Scholar

  • [9]

    F. Chiarenza, M. Frasca, P. Longo, W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc. 336, No 2 (1993), 841–853; .CrossrefGoogle Scholar

  • [10]

    D. Cruz-Uribe, A. Fiorenza, Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. Publ. Mat. 47, No 1 (2003), 103–131; .CrossrefGoogle Scholar

  • [11]

    E. Dalmasso, G. Pradolini, Characterizations of the boundedness of generalized fractional maximal functions and related operators in Orlicz spaces. Math. Nach. 290, No 1 (2017), 19–36; .CrossrefGoogle Scholar

  • [12]

    L. Diening, M. Růžička, Calderón-Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics. J. Reine Angew. Math. 563 (2003), 197–220; .CrossrefGoogle Scholar

  • [13]

    Y. Ding, S. Lu, Weighted norm inequalities for fractional integral operators with rough kernel. Canad. J. Math. 50, No 1 (1998), 29–39; .CrossrefGoogle Scholar

  • [14]

    Y. Ding, S. Lu, P. Zhang, Weak estimates for commutators of fractional integral operators. Sci. China Ser. A 44, No 7 (2001), 877–888; .CrossrefGoogle Scholar

  • [15]

    J. García-Cuerva, J.L.R. de Francia, Weighted Norm Inequalities and Related Topics. Ser. North-Holland Math. Studies # 116, North-Holland Publ. Co., Amsterdam (1985).Google Scholar

  • [16]

    J. García-Cuerva, E. Harboure, C. Segovia, J.L. Torrea, Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J. 40, No 4 (1991), 1397–1420; .CrossrefGoogle Scholar

  • [17]

    O. Gorosito, G. Pradolini, O. Salinas, Weighted weak-type estimates for multilinear commutators of fractional integrals on spaces of homogeneous type. Acta Math. Sin. (Engl. Ser.) 23, No 10 (2007), 1813–1826; .CrossrefGoogle Scholar

  • [18]

    E. Harboure, O. Salinas, B. Viviani, Orlicz boundedness for certain classical operators. Colloq. Math. 91, No 2 (2002), 263–282; .CrossrefGoogle Scholar

  • [19]

    E. Harboure, C. Segovia, J.L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of p. Illinois J. Math. 41, No 4 (1997), 676–700.Google Scholar

  • [20]

    G.H. Hardy, J.E. Littlewood, Some properties of fractional integrals, II. Math. Z. 34, No 1 (1932), 403–439; .CrossrefGoogle Scholar

  • [21]

    F. John, L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415–426; .CrossrefGoogle Scholar

  • [22]

    A.Y. Karlovich, A.K. Lerner, Commutators of singular integrals on generalized Lp spaces with variable exponent. Publ. Mat. 49, No 1 (2005), 111–125; .CrossrefGoogle Scholar

  • [23]

    D.S. Kurtz, Sharp function estimates for fractional integrals and related operators. J. Austral. Math. Soc. Ser. A 49, No 1 (1990), 129–137.CrossrefGoogle Scholar

  • [24]

    M. Lorente, J.M. Martell, M.S. Riveros, A. de la Torre, Generalized Hörmander’s conditions, commutators and weights. J. Math. Anal. Appl. 342, No 2 (2008), 1399–1425; .CrossrefGoogle Scholar

  • [25]

    Y. Meng, D. Yang, Boundedness of commutators with Lipschitz functions in non-homogeneous spaces. Taiwanese J. Math. 10, No 6 (2006), 1443–1464.CrossrefGoogle Scholar

  • [26]

    B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc. 192 (1974), 261–274.CrossrefGoogle Scholar

  • [27]

    C. Pérez, Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128, No 1 (1995), 163–185; .CrossrefGoogle Scholar

  • [28]

    C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. Appl. 3, No 6 (1997), 743–756; .CrossrefGoogle Scholar

  • [29]

    C. Pérez, G. Pradolini, R.H. Torres, R. Trujillo-González, End-point estimates for iterated commutators of multilinear singular integrals. Bull. Lond. Math. Soc. 46, No 1 (2014), 26–42; .CrossrefWeb of ScienceGoogle Scholar

  • [30]

    G. Pradolini, Two-weighted norm inequalities for the fractional integral operator between Lp and Lipschitz spaces. Comment. Math. (Prace Mat.) 41 (2001), 147–169.Google Scholar

  • [31]

    G.G. Pradolini, W.A. Ramos, Characterization of Lipschitz functions via the commutators of singular and fractional integral operators in variable Lebesgue spaces. Potential Anal. 46, No 3 (2017), 499–525; .CrossrefWeb of ScienceGoogle Scholar

  • [32]

    G. Pradolini, O. Salinas, The fractional integral between weighted Orlicz and BMOϕ spaces on spaces of homogeneous type. Comment. Math. Univ. Carolin. 44, No 3 (2003), 469–487.Google Scholar

  • [33]

    C. Rios, The Lp Dirichlet problem and nondivergence harmonic measure. Trans. Amer. Math. Soc. 355, No 2 (2003), 665–687; .CrossrefGoogle Scholar

  • [34]

    C. Segovia, J.L. Torrea, Weighted inequalities for commutators of fractional and singular integrals. Publ. Mat. 35, No 1 (1991), 209–235; .CrossrefGoogle Scholar

  • [35]

    E.M. Stein, G. Weiss, Fractional integrals on n-dimensional Euclidean space. J. Math. Mech. 7 (1958), 503–514.Google Scholar

About the article

Received: 2017-03-03

Published Online: 2018-07-12

Published in Print: 2018-06-26

Citation Information: Fractional Calculus and Applied Analysis, Volume 21, Issue 3, Pages 628–653, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.1515/fca-2018-0034.

Export Citation

© 2018 Diogenes Co., Sofia.Get Permission

Comments (0)

Please log in or register to comment.
Log in