Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2017: 2.865
5-year IMPACT FACTOR: 3.323

CiteScore 2017: 3.06

SCImago Journal Rank (SJR) 2017: 1.967
Source Normalized Impact per Paper (SNIP) 2017: 1.954

Mathematical Citation Quotient (MCQ) 2017: 0.98

Online
ISSN
1314-2224
See all formats and pricing
More options …

Novel numerical analysis of multi-term time fractional viscoelastic non-newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid

Libo Feng / Fawang Liu / Ian Turner
  • School of Mathematical Sciences, Queensland University of Technology GPO Box 2434, Brisbane, Qld 4001, Australia
  • Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) Queensland University of Technology (QUT) Brisbane, Brisbane, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liancun Zheng
Published Online: 2018-10-29 | DOI: https://doi.org/10.1515/fca-2018-0058

Abstract

In this paper, we consider the application of the finite difference method for a class of novel multi-term time fractional viscoelastic non-Newtonian fluid models. An important contribution of the work is that the new model not only has a multi-term time derivative, of which the fractional order indices range from 0 to 2, but also possesses a special time fractional operator on the spatial derivative that is challenging to approximate. There appears to be no literature reported on the numerical solution of this type of equation. We derive two new different finite difference schemes to approximate the model. Then we establish the stability and convergence analysis of these schemes based on the discrete H1 norm and prove that their accuracy is of O(τ + h2) and O(τmin{3–γs,2–αq,2–β}+h2), respectively. Finally, we verify our methods using two numerical examples and apply the schemes to simulate an unsteady magnetohydrodynamic (MHD) Couette flow of a generalized Oldroyd-B fluid model. Our methods are effective and can be extended to solve other non-Newtonian fluid models such as the generalized Maxwell fluid model, the generalized second grade fluid model and the generalized Burgers fluid model.

MSC 2010: Primary 26A33; Secondary 35Q35; 65M06; 65M12; 76W05

Key Words and Phrases: multi-term time derivative; finite difference method; fractional non-Newtonian fluids; generalized Oldroyd-B fluid; Couette flow; stability and convergence analysis

References

  • [1]

    R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology 27, No 3 (1983), 201–210.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    E. Bazhlekova, I. Bazhlekov, Viscoelastic flows with fractional derivative models: computational approach by convolutional calculus of Dimovski. Fract. Calc. Appl. Anal. 17, No 4 (2014), 954–976; DOI: 10.2478/s13540-014-0209-x; https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.Web of Science

  • [3]

    A. Böttcher, B. Silbermann, Analysis of Toeplitz operators. Springer-Verlag, Berlin (2005).Google Scholar

  • [4]

    J. Chen, F. Liu, V. Anh, S. Shen, Q. Liu, C. Liao, The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, No 4 (2012), 1737–1748.Web of ScienceGoogle Scholar

  • [5]

    V. Daftardar-Gejji, S. Bhalekar, Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 345 (2008), 754–765.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    M. Dehghan, M. Safarpoor, M. Abbaszadeh, Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290 (2015) 174–195.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    L. Feng, F. Liu, I. Turner, P. Zhuang, Numerical methods and analysis for simulating the flow of a generalized Oldroyd-B fluid between two infinite parallel rigid plates. Internat. J. of Heat and Mass Transfer 115 (2017), 1309–1320.CrossrefWeb of ScienceGoogle Scholar

  • [8]

    N.J. Ford, J.A. Connolly, Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. J. Comput. Appl. Math. 229, No 2 (2009), 382–391.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    C. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivative. Rheologica Acta 30, No 2 (1991), 151–158.CrossrefGoogle Scholar

  • [10]

    A. Hernández-Jimenez, J. Hernández-Santiago, A. Macias-García, J. Sánchez-González, Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polymer Testing 21, No 3 (2002), 325–331.CrossrefGoogle Scholar

  • [11]

    R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific Press, Singapore (2000).Google Scholar

  • [12]

    H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, No 10 (2012), 3377–3388.CrossrefGoogle Scholar

  • [13]

    B. Jin, R. Lazarov, Y. Liu, Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281 (2015), 825–843.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, No 3 (2011), 855–875.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    F. Liu, M. Meerschaert, R. McGough, P. Zhuang, Q. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, No 1 (2013), 9–25; DOI:10.2478/s13540-013-0002-2; https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.PubMedWeb of Science

  • [16]

    F. Liu, P. Zhuang, Q. Liu, Numerical Methods of Fractional Partial Differential Equations and Applications. Science Press, Beingjing (2015).Google Scholar

  • [17]

    F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, No 1 (2007), 12–20.Web of ScienceGoogle Scholar

  • [18]

    Y. Liu, L. Zheng, X. Zhang, Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative. Comput. Math. Appl. 61, No 2 (2011), 443–450.Web of ScienceCrossrefGoogle Scholar

  • [19]

    J.C. Lopez-Marcos, A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. on Numerical Analysis 27, No 1 (1990), 20–31.CrossrefGoogle Scholar

  • [20]

    Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374, No 2 (2011), 538–548.Web of ScienceCrossrefGoogle Scholar

  • [21]

    M. Khan, S. Hyder Ali, H. Qi, Some accelerated flows for a generalized Oldroyd-B fluid. Nonlinear Anal. Real World Appl. 10, No 2 (2009), 980–991.Web of ScienceCrossrefGoogle Scholar

  • [22]

    M. Khan, K. Maqbool, T. Hayat, Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space. Acta Mechanica 184, No 1 (2006), 1–13.CrossrefGoogle Scholar

  • [23]

    N. Makris, M.C. Constantinou, Fractional-derivative Maxwell model for viscous dampers. J. of Structural Engineering 117, No 9 (1991), 2708–2724.CrossrefGoogle Scholar

  • [24]

    C. Ming, F. Liu, L. Zheng, I. Turner, V. Anh, Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid. Comput. Math. Appl. 72, No 9 (2016), 2084–2097.CrossrefGoogle Scholar

  • [25]

    I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Google Scholar

  • [26]

    H. Qi, M. Xu, Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta Mechanica Sinica 23, No 5 (2007), 463–469.Web of ScienceCrossrefGoogle Scholar

  • [27]

    S. Qin, F. Liu, I. Turner, A two-dimensional multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements. Commun. Nonlin. Sci. Numer. Simul. 56 (2018), 270–286.CrossrefGoogle Scholar

  • [28]

    A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics. Springer-Verlag, Berlin (2000).Google Scholar

  • [29]

    Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, No 2 (2006), 193–209.CrossrefGoogle Scholar

  • [30]

    H. Ye, F. Liu, V. Anh, Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comp. Physics 298 (2015), 652–660.CrossrefGoogle Scholar

  • [31]

    L. Zheng, Y. Liu, X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Anal. Real World Appl. 13, No 2 (2012), 513–523.Web of ScienceCrossrefGoogle Scholar

  • [32]

    M. Zheng, F. Liu, V. Anh, I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model. 40, No 7 (2016), 4970–4985.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-01-01

Published Online: 2018-10-29

Published in Print: 2018-08-28


Citation Information: Fractional Calculus and Applied Analysis, Volume 21, Issue 4, Pages 1073–1103, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.1515/fca-2018-0058.

Export Citation

© 2018 Diogenes Co., Sofia.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yanqin Liu, Xiuling Yin, Libo Feng, and Hongguang Sun
Advances in Difference Equations, 2018, Volume 2018, Number 1
[2]
Libo Feng, Fawang Liu, and Ian Turner
Communications in Nonlinear Science and Numerical Simulation, 2019, Volume 70, Page 354

Comments (0)

Please log in or register to comment.
Log in