[1]

R. Almeida, N.R.O. Bastos, M.T.T. Monteiro, A fractional Malthusian growth model with variable order using an optimization approach. *Stat*. *Optim*. *Inf*. *Comput*. **6**, No 1 (2018), 4–11. Google Scholar

[2]

R. Almeida, D. Tavares, D.F.M. Torres, *The Variable*-*Order Fractional Calculus of Variations*. SpringerBriefs in Applied Sciences and Technology, Springer, Cham (2018). Google Scholar

[3]

R. Almeida, D.F.M. Torres, Computing Hadamard type operators of variable fractional order. *Appl*. *Math*. *Comput*. **257** (2015), 74–88. Google Scholar

[4]

V.V. Anh, J.M. Angulo, M.D. Ruiz-Medina, Diffusion on multifractals. *Nonlinear Anal*.-*Theor*. **63**, No 5 (2005), 2043–2056. CrossrefGoogle Scholar

[5]

A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation. *J*. *Comput*. *Phys*. **293**, No C (2015), 104–114. CrossrefGoogle Scholar

[6]

A. Atangana, J.F. Botha, A generalized groundwater flow equation using the concept of variable-order derivative. *Bound*. *Value Probl*. **2013**, No 1 (2013), # 53. CrossrefGoogle Scholar

[7]

A. Atangana, A.H. Cloot, Stability and convergence of the space fractional variable-order Schrödinger equation. *Adv*. *Differ*. *Equ*. **2013**, No 1 (2013), 1–10. Google Scholar

[8]

A.A. Awotunde, R.A. Ghanam, N.E. Tatar, Artificial boundary condition for a modified fractional diffusion problem. *Bound. Value Probl*. **2015**, No 1 (2015), # 20. CrossrefGoogle Scholar

[9]

R.L. Bagley, The thermorheologically complex material. *J*. *Acoust*. *Soc*. *Am*. **90**, No 7 (1991), 797–806. Google Scholar

[10]

P. Balasubramaniam, P. Muthukumar, K. Ratnavelu, Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. *Nonlinear Dynam*. **80**, No 1-2 (2015), 249–267. CrossrefGoogle Scholar

[11]

A.H. Bhrawy, M.A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. *Nonlinear Dynam*. **80**, No 1-2 (2015), 101–116. CrossrefGoogle Scholar

[12]

A.H. Bhrawy, M.A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation. *Nonlinear Dynam*. **85**, No 3 (2016), 1815–1823. CrossrefGoogle Scholar

[13]

A.H. Bhrawy, M.A. Zaky, An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations. *Appl*. *Numer*. *Math*. **111** (2017), 197–218. CrossrefGoogle Scholar

[14]

Y. Bouras, D. Zorica, T.M. Atanacković, Z. Vrcelj, A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete. *Appl*. *Math*. *Model*. **55** (2018), 551–568. CrossrefGoogle Scholar

[15]

D.W. Brzeziński, P. Ostalczyk, About accuracy increase of fractional order derivative and integral computations by applying the Grünwald-Letnikov formula. *Commun. Nonlinear Sci*. **40** (2016), 151-162. CrossrefGoogle Scholar

[16]

W. Cai, W. Chen, J. Fang, S. Holm, A survey on fractional derivative modeling of power-law frequency-dependent viscous dissipative and scattering attenuation in acoustic wave propagation. *Appl*. *Mech*. *Rev*. **70**, No 3 (2018), # 030802. Google Scholar

[17]

J. Cao, Y. Qiu, A high order numerical scheme for variable order fractional ordinary differential equation. *Appl*. *Math*. *Lett*. **61** (2016), 88–94. CrossrefGoogle Scholar

[18]

A. Chang, H. Sun, Time-space fractional derivative models for CO2 transport in heterogeneous media. *Fract*. *Calc*. *Appl*. *Anal*. **21**, No 1 (2018), 151–173; ; https://www.degruyter.com/view/j/fca.2018.21.issue-1/issue-files/fca.2018.21.issue-1.xml. Crossref

[19]

A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Fractional diffusion in inhomogeneous media. *J*. *Phys*. *A: Gen*. *Phys*. **38**, No 42 (2005), 679–684. CrossrefGoogle Scholar

[20]

Y. Chen, C. Chen, Numerical simulation with the second order compact approximation of first order derivative for the modified fractional diffusion equation. *Appl*. *Math*. *Comput*. **320** (2018), 319–330. Google Scholar

[21]

C. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. *SIAM J*. *Sci*. *Comput*. **32**, No 4 (2010), 1740–1760.CrossrefGoogle Scholar

[22]

S. Chen, F. Liu, K. Burrage, Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. *Comput*. *Math*. *Appl*. **68**, No 12 (2014), 2133–2141. CrossrefGoogle Scholar

[23]

Y. Chen, L. Liu, B. Li, Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials. *Appl*. *Math*. *Comput*. **238**, No 7 (2014), 329–341. Google Scholar

[24]

Y. Chen, L. Liu, D. Liu, D. Boutat, Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials. *Ain Shams Eng. J*. **9**, No 4 (2018), 1235–1241. CrossrefGoogle Scholar

[25]

H. Chen, H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. *J*. *Comput*. *Appl*. *Math*. **296** (2015), 480–498. Google Scholar

[26]

Y. Chen, Y. Wei, D. Liu, D. Boutat, X. Chen, Variable-order fractional numerical differentiation for noisy signals by wavelet denoising. *J*. *Comput. Phys*. **311** (2016), 338–347. CrossrefGoogle Scholar

[27]

Y. Chen, Y. Wei, D. Liu, H. Yu, Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. *Appl*. *Math*. *Lett*. **46** (2015), 83–88. CrossrefGoogle Scholar

[28]

W. Chen, J. Zhang, J. Zhang, A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. *Fract*. *Calc*. *Appl*. *Anal*. **16**, No 1 (2013), 76–92; ; https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml. Crossref

[29]

T.S.Y. Choong, T.N. Wong, T.G. Chuah, A. Idris, Film-pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon. *J*. *Colloid Interf. Sci*. **301**, No 2 (2006), 436–440. CrossrefGoogle Scholar

[30]

C.F.M. Coimbra, Mechanics with variable-order differential operators. *Ann. Der Phys*. **12**, No (11-12) (2003), 692–703. CrossrefGoogle Scholar

[31]

C.F.M. Coimbra, D. ĽEsperance, R.A. Lambert, J.D. Trolinger, R.H. Rangel, An experimental study on stationary history effects in high-frequency Stokes flows. *J*. *Fluid Mech*. **504**, No 504 (2004), 353–363. CrossrefGoogle Scholar

[32]

C.F.M. Coimbra, R.H. Rangel, Spherical particle motion in harmonic Stokes flows. *AIAA J*. **39**, No 9 (2015), 1673–1682. Google Scholar

[33]

G.R.J. Cooper, D.R. Cowan, Filtering using variable order vertical derivatives. *Comput. Geosci*. **30**, No 5 (2004), 455–459. CrossrefGoogle Scholar

[34]

A. Dabiri, B.P. Moghaddam, J.A.T. Machado, Optimal variable-order fractional PID controllers for dynamical systems. *J*. *Comput*. *Appl*. *Math*. **339** (2018), 40–48. CrossrefGoogle Scholar

[35]

W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation. *J*. *Comput*. *Phys*. **227**, No 2 (2007), 1510–1522. CrossrefGoogle Scholar

[36]

G. Diaz, C.F.M. Coimbra, Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. *Nonlinear Dynam*. **56**, No 1 (2009), 145–157. CrossrefGoogle Scholar

[37]

G. Diaz, C.F.M. Coimbra, Dynamics and control of nonlinear variable order oscillators. Ch. 6, in: *Nonlinear Dynamics* (Ed. T. Evans), InTech (2010), 129–144. Google Scholar

[38]

Z. Fu, W. Chen, L. Ling, Method of approximate particular solutions for constant- and variable-order fractional diffusion models. *Eng*. *Anal*. *Bound*. *Elem*. **57** (2015), 37–46. CrossrefGoogle Scholar

[39]

Z. Ge, C. Ou, Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal. *Chaos Soliton. Fract*. **35**, No 4 (2008), 705–717. CrossrefGoogle Scholar

[40]

D.N. Gerasimov, V.A. Kondratieva, O.A. Sinkevich, An anomalous non-self-similar infiltration and fractional diffusion equation. *Phys. D Nonlinear Phenom*. **239**, No 16 (2010), 1593–1597. CrossrefGoogle Scholar

[41]

W.G. Glöckle, T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. *Biophys. J*. **68**, No 1 (1995), 46–53. CrossrefPubMedGoogle Scholar

[42]

J.F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. *Phys. A* **494** (2018), 52–75. CrossrefGoogle Scholar

[43]

R.M. Hafez, Y.H. Youssri, Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation. *Comput*. *Appl*. *Math*. **37**, No 4 (2018), 5315–5333. CrossrefGoogle Scholar

[44]

G. He, M. Luo, Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control. *Appl*. *Math*. *Mech*. **33**, No 5 (2012), 567–582. CrossrefGoogle Scholar

[45]

R. Herrmann, Uniqueness of the fractional derivative definition. *arXiv Preprint*, arXiv:1303.2939 (2013). Google Scholar

[46]

M.H. Heydari, Z. Avazzadeh, A new wavelet method for variable-order fractional optimal control problems. *Asian J*. *Control* **20**, No 5 (2017), 1–14. Google Scholar

[47]

M.H. Heydari, Z. Avazzadeh, An operational matrix method for solving variable-order fractional biharmonic equation. *Comput*. *Appl*. *Math*. **37**, No 4 (2018), 4397–4411. CrossrefGoogle Scholar

[48]

Y. Hong, J. Lin, W. Chen, Simulation of thermal field in mass concrete structures with cooling pipes by the localized radial basis function collocation method. *Int. J. Heat Mass Tran*. **129** (2019), 449–459. CrossrefGoogle Scholar

[49]

D. Ingman, J. Suzdalnitsky, Control of damping oscillations by fractional differential operator with time-dependent order. *Comput. Method. Appl. Mech. Eng*. **193**, No 52 (2004), 5585–5595. CrossrefGoogle Scholar

[50]

D. Ingman, J. Suzdalnitsky, M. Zeifman, Constitutive dynamic-order model for nonlinear contact phenomena. *J*. *Appl*. *Mech*. **67**, No 2 (2000), 383–390. CrossrefGoogle Scholar

[51]

Y. Jia, M. Xu, Y. Lin, A numerical solution for variable order fractional functional differential equation. *Appl*. *Math*. *Lett*. **64** (2017), 125–130. CrossrefGoogle Scholar

[52]

W. Jiang, H. Li, A space-time spectral collocation method for the two-dimensional variable-order fractional percolation equations. *Comput*. *Math*. *Appl*. **75**, No 10 (2018), 3508–3520. CrossrefGoogle Scholar

[53]

W. Jiang, N. Liu, A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model. *Appl*. *Numer*. *Math*. **119** (2017), 18–32. CrossrefGoogle Scholar

[54]

S. Jiang, J. Zhang, Z. Qian, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. *Commun*. *Comput*. *Phys*. **21**, No 3 (2017), 650–678. CrossrefGoogle Scholar

[55]

S.N. Kamenia, J.D. Djidaa, A. Atangana, Modelling the movement of groundwater pollution with variable order derivative. *J*. *Nonlinear Sci. Appl*. **10** (2017), 5422–5432. CrossrefGoogle Scholar

[56]

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, *Theory and Applications of Fractional Differential Equations*. {Elsevier} (2006). Google Scholar

[57]

Y.L. Kobelev, L.Y. Kobelev, Y.L. Klimontovich, Statistical physics of dynamic systems with variable memory. *Dokl*. *Phys*. **48**, No 6 (2003), 285–289. CrossrefGoogle Scholar

[58]

Y.L. Kobelev, L.Y. Kobelev, Y.L. Klimontovich, Anomalous diffusion with time-and coordinate-dependent memory. *Dokl*. *Phys*. **48**, No 6 (2003), 264–268. CrossrefGoogle Scholar

[59]

P. Kumar, S.K. Chaudhary, Analysis of fractional order control system with performance and stability. *Int*. *J*. *Eng*. *Sci*. *Tech*. **9**, No 5 (2017), 408–416. Google Scholar

[60]

T.A.M. Langlands, B.I. Henry, Fractional chemotaxis diffusion equations. *Phys*. *Rev*. *E* **81** (2010), # 051102. Google Scholar

[61]

J.R. Leith, Fractal scaling of fractional diffusion processes. *Signal Process*. **83**, No 11 (2003), 2397–2409. CrossrefGoogle Scholar

[62]

Z. Li, H. Wang, R. Xiao, S. Yang, A variable-order fractional differential equation model of shape memory polymers. *Chaos Soliton*. *Fract*. **102** (2017), 473–485. CrossrefGoogle Scholar

[63]

X. Li, B. Wu, A numerical technique for variable fractional functional boundary value problems. *Appl*. *Math*. *Lett*. **43** (2015), 108–113. CrossrefGoogle Scholar

[64]

X. Li, B. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations. *J*. *Comput*. *Appl*. *Math*. **311** (2016), 387–393.Google Scholar

[65]

R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. *Appl*. *Math*. *Comput*. **212**, No 2 (2009), 435–445. Google Scholar

[66]

C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. *Nonlinear Dynam*. **29**, No 1 (2002), 57–98. CrossrefGoogle Scholar

[67]

C.F. Lorenzo, T.T. Hartley, Initialization, conceptualization, and application in the generalized fractional calculus. *Crit*. *Rev*. *Biomed*. *Eng*. **35**, No 6 (2007), 477–553. Google Scholar

[68]

R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. *J*. *Magn*. *Reson*. **190**, No 2 (2008), 255–270. PubMedCrossrefGoogle Scholar

[69]

M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. *Appl*. *Numer*. *Math*. **51**, No 1 (2006), 80–90. Google Scholar

[70]

R. Meng, D. Yin, C. Zhou, H. Wu, Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. *Appl*. *Math*. *Model*. **40**, No 1 (2016), 398–406. CrossrefGoogle Scholar

[71]

R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. *Phys. Rep*. **339**, No 1 (2000), 1–77. CrossrefGoogle Scholar

[72]

B.P. Moghaddam, J.A.T. Machado, A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. *Comput*. *Math*. *Appl*. **73**, (2017), 1262–1269. CrossrefGoogle Scholar

[73]

B.P. Moghaddam, J.A.T. Machado, H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems. *Chaos Soliton. Fract*. **102**, Suppl. C (2017), 354–360. CrossrefGoogle Scholar

[74]

P. Muthukumar, P. Balasubramaniam, Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. *Nonlinear Dynam*. **74**, No 4 (2013), 1169–1181. CrossrefGoogle Scholar

[75]

P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization and an application of a novel fractional order King Cobra chaotic system. *Chaos* **24**, No 3 (2014), # 033105. PubMedGoogle Scholar

[76]

P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). *Nonlinear Dynam*. **77**, No 4 (2014), 1547–1559. CrossrefGoogle Scholar

[77]

P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its application to an affine cipher using date of birth (DOB). *Nonlinear Dynam*. **80**, No 4 (2015), 1883–1897. CrossrefGoogle Scholar

[78]

J. Pinheiro Neto, R. Moura Coelho, D. Valério, S. Vinga, D. Sierociuk, W. Malesza, M. Macias, A. Dzieliński, Variable order differential models of bone remodelling. *IFAC Int*. *Fed*. *Autom*. *Control* **50**, No 1 (2017), 8066–8071. Google Scholar

[79]

S. Nimmo, A.K. Evans, The effects of continuously varying the fractional differential order of chaotic nonlinear systems. *Chaos Soliton*. *Fract*. **10**, No 7 (1999), 1111–1118. CrossrefGoogle Scholar

[80]

A.D. Obembe, M.E. Hossain, S.A. Abu-Khamsin, Variable-order derivative time fractional diffusion model for heterogeneous porous media. *J*. *Petrol*. *Sci*. *Eng*. **152** (2017), 391–405. CrossrefGoogle Scholar

[81]

H.T.C. Pedro, M.H. Kobayashi, J.M.C. Pereira, C.F.M. Coimbra, Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. *J*. *Vib*. *Control* **14**, No (9-10) (2008), 1659–1672. CrossrefGoogle Scholar

[82]

I. Podlubny, *Fractional Differential Equations*. Academic Press, San Diego etc. (1999). Google Scholar

[83]

I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. *Fract*. *Calc*. *Appl*. *Anal*. **5**, No 4 (2002), 230–237. Google Scholar

[84]

Y. Povstenko, J. Klekot, The Dirichlet problem for the time-fractional advection-diffusion equation in a line segment. *Bound*. *Value Probl*. **2016**, No 1 (2016), # 89. CrossrefGoogle Scholar

[85]

L.E.S. Ramirez, C.F.M. Coimbra, A variable order constitutive relation for viscoelasticity. *Ann. Der Phys*. **16**, No 7-8 (2007), 543–552. CrossrefGoogle Scholar

[86]

A. Razminia, A.F. Dizaji, V.J. Majd, Solution existence for non-autonomous variable-order fractional differential equations. *Math*. *Comput*. *Model*. **55**, No 3 (2012), 1106–1117. CrossrefGoogle Scholar

[87]

M.D. Ruiz-Medina, V.V. Anh, J.M. Angulo, Fractional generalized random fields of variable order. *Stoch*. *Anal*. *Appl*. **22**, No 3 (2004), 775–799. CrossrefGoogle Scholar

[88]

S.G. Samko, Fractional integration and differentiation of variable order. *Anal*. *Math*. **21**, No 3 (1995), 213–236. CrossrefGoogle Scholar

[89]

S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. *Integr*. *Transf*. *Spec*. *Funct*. **1**, No 4 (1993), 277–300. CrossrefGoogle Scholar

[90]

S. Shen, F. Liu, J. Chen, I. Turner, V. Anh, Numerical techniques for the variable order time fractional diffusion equation. *Appl. Math. Comput*. **218**, No 22 (2011), 10861–10870. Google Scholar

[91]

H. Sheng, H.G. Sun, Y.Q. Chen, T. Qiu, Synthesis of multifractional Gaussian noises based on variable-order fractional operators. *Signal Process*. **91**, No 7 (2011), 1645–1650. CrossrefGoogle Scholar

[92]

H. Sheng, H.G. Sun, C. Coopmans, Y. Chen, G.W. Bohannan, A Physical experimental study of variable-order fractional integrator and differentiator. *Eur*. *Phys*. *J*. *Spec*. *Top*. **193**, No 1 (2011), 93–104. CrossrefGoogle Scholar

[93]

D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus. *Philos*. *Trans*. **371**, No 1990 (2013), # 20120146. CrossrefGoogle Scholar

[94]

D. Sierociuk, W. Malesza, M. Macias, Derivation, interpretation, and analog modelling of fractional variable order derivative definition. *Appl*. *Math*. *Model*. **39**, No 13 (2014), 3876–3888. Google Scholar

[95]

D. Sierociuk, W. Malesza, M. Macias, On the recursive fractional variable-order derivative: Equivalent switching strategy, duality, and analog modeling. *Circ*. *Syst*. *Signal Process*. **34**, No 4 (2015), 1077–1113. CrossrefGoogle Scholar

[96]

W. Smit, H.D. Vries, Rheological models containing fractional derivatives. *Rheol*. *Acta* **9**, No 4 (1970), 525–534. CrossrefGoogle Scholar

[97]

I.M. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. *Chaos* **15**, No 2 (2005), # 26103. PubMedCrossrefGoogle Scholar

[98]

I.M. Sokolov, J. Klafter, Field-induced dispersion in subdiffusion. *Phys*. *Rev*. *Lett*. **97**, No 14 (2006), # 140602. CrossrefPubMedGoogle Scholar

[99]

J.E. Solís-Pérez, J.F. Gómez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. *Chaos Soliton*. *Fract*. **114** (2018), 175-185. CrossrefGoogle Scholar

[100]

C.M. Soon, C.F.M. Coimbra, M.H. Kobayashi, The variable viscoelasticity oscillator. *Ann*. *Der*. *Phys*. **14**, No 14 (2005), 378–389. CrossrefGoogle Scholar

[101]

P. Straka, Variable order fractional Fokker-Planck equations derived from continuous time random walks. *Phys*. *A* **503** (2018), 451–463. CrossrefGoogle Scholar

[102]

H.G. Sun, Y. Chen, W. Chen, Random-order fractional differential equation models. *Signal Process*. **91**, No 3 (2011), 525–530. CrossrefGoogle Scholar

[103]

H.G. Sun, W. Chen, Y. Chen, Variable-order fractional differential operators in anomalous diffusion modeling. *Phys*. *A* **388**, No 21 (2009), 4586–4592. CrossrefGoogle Scholar

[104]

H.G. Sun, W. Chen, C. Li, Y. Chen, Finite difference schemes for variable-order time fractional diffusion equation. *Int*. *J*. *Bifurcat*. *Chaos* **22**, No 4 (2012), # 1250085. CrossrefGoogle Scholar

[105]

H.G. Sun, W. Chen, H. Sheng, Y. Chen, On mean square displacement behaviors of anomalous diffusions with variable and random orders. *Phys*. *Lett*. *A* **374**, No 7 (2010), 906–910. CrossrefGoogle Scholar

[106]

H.G. Sun, W. Chen, H. Wei, Y. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. *Eur*. *Phys*. *J*. *Spec*. *Top*. **193**, No 1 (2011), 185–192. CrossrefGoogle Scholar

[107]

H.G. Sun, S. Hu, Y. Chen, C. Wen, Z. Yu, A dynamic-order fractional dynamic system. *Chinese Phys*. *Lett*. **30**, No 4 (2013), 365–367. Google Scholar

[108]

H.G. Sun, X. Song, Y. Chen, A class of fractional dynamic systems with fuzzy order. In: *Intelligent Control and Automation IEEE* **20**, No 1 (2010), 197–201. Google Scholar

[109]

H.G. Sun, Y. Zhang, W. Chen, D.M. Reeves, Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. *J*. *Contam*. *Hydrol*. **157** (2014), 47–58.CrossrefPubMedGoogle Scholar

[110]

J. Suzdalnitsky, D. Ingman, Application of differential operator with servo-order function in model of viscoelastic deformation process. *J*. *Eng*. *Mech*. **131**, No 7 (2005), 763–767. CrossrefGoogle Scholar

[111]

N.H. Sweilam, S.M. Al-Mekhlafi, Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives. *J*. *Adv*. *Res*. **7**, No 2 (2016), 271–283. PubMedCrossrefGoogle Scholar

[112]

N.H. Sweilam, M.M. Khader, H.M. Almarwm, Numerical studies for the variable-order nonlinear fractional wave equation. *Fract*. *Calc*. *Appl*. *Anal*. **15**, No 4 (2012), 669–683; ; https://www.degruyter.com/view/j/fca.2012.15.issue-4/s13540-012-0045-9/s13540-012-0045-9.xml. Crossref

[113]

N.H. Sweilam, T.A. Rahman Assiri, Numerical simulations for the space-time variable order nonlinear fractional wave equation. *J*. *Appl*. *Math*. **2013**, No 2013 (2013), 183–189. Google Scholar

[114]

D. Tavares, R. Almeida, D.F.M. Torres, Caputo derivatives of fractional variable order: Numerical approximations. *Commun. Nonlinear Sci*. **35** (2016), 69–87. CrossrefGoogle Scholar

[115]

A. Tayebi, Y. Shekari, M.H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. *J*. *Comput*. *Phys*. **340** (2017), 655–669. CrossrefGoogle Scholar

[116]

C.C. Tseng, Design of variable and adaptive fractional order FIR differentiators. *Signal Process*. **86**, No 10 (2018), 2554–2566. Google Scholar

[117]

S. Umarov, S. Steinberg, Variable order differential equations and diffusion processes with changing modes. *Z*. *für Anal*. *Und Ihre Anwend*. **28**, No 4 (2010), 431–450. Google Scholar

[118]

D. Valério, J. Sá da Costa, Variable-order fractional derivatives and their numerical approximations. *Signal Process*. **91**, No 3 (2011), 470–483. CrossrefGoogle Scholar

[119]

F. Wang, Q. Hua, C. Liu, Boundary function method for inverse geometry problem in two-dimensional anisotropic heat conduction equation. *Appl*. *Math*. *Lett*. **84** (2018), 130–136. CrossrefGoogle Scholar

[120]

S. Wang, R. Wu, Dynamic analysis of a 5D fractional-order hyperchaotic system. *Int*. *J*. *Control Autom*. *Syst*. **15**, No 3 (2017), 1003–1010. CrossrefGoogle Scholar

[121]

S. Wei, W. Chen, Y. Zhang, H. Wei, R.M. Garrard, A local radial basis function collocation method to solve the variable-order time fractional diffusion equation in a two-dimensional irregular domain. *Numer*. *Method*. *Part*. *Differ*. *Equ*. **34**, No 4 (2018), 1209–1223. CrossrefGoogle Scholar

[122]

G. Wu, D. Baleanu, H. Xie, S. Zeng, Lattice fractional diffusion equation of random order. *Math*. *Method*. *Appl*. *Sci*. **40**, No 17 (2015), 6054–6060. Google Scholar

[123]

F. Wu, J. Liu, J. Wang, An improved Maxwell creep model for rock based on variable-order fractional derivatives. *Environ*. *Earth Sci*. **73**, No 11 (2015), 6965–6971. CrossrefGoogle Scholar

[124]

T. Xu, S. Lü, W. Chen, H. Chen, Finite difference scheme for multi-term variable-order fractional diffusion equation. *Adv*. *Differ*. *Equ*. **2018**, No 1 (2018), # 103. CrossrefGoogle Scholar

[125]

W. Xu, H.G. Sun, W. Chen, H. Chen. Transport properties of concrete-like granular materials interacted by their microstructures and particle components. *Int*. *J*. *Mod*. *Phys*. *B* **32**, No 18 (2018), # 1840011. CrossrefGoogle Scholar

[126]

X. Yang, C. Li, T. Huang, Q. Song, Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. *Appl*. *Math*. *Comput*. **293** (2017), 416–422. Google Scholar

[127]

X. Yang, J.A.T. Machado, A new fractional operator of variable order: application in the description of anomalous diffusion. *Phys*. *A* **481** (2017), 276–283. CrossrefGoogle Scholar

[128]

J. Yang, H. Yao, B. Wu, An efficient numerical method for variable order fractional functional differential equation. *Appl*. *Math*. *Lett*. **76** (2018), 221–226. CrossrefGoogle Scholar

[129]

A. Yildirim, S.T. Mohyud-Din, Analytical approach to space- and time-fractional Burgers equations. *Chinese Phys*. *Lett*. **27**, No 9 (2010), 38–41. Google Scholar

[130]

D. Yin, Y. Li, H. Wu, X. Duan, Fractional description of mechanical property evolution of soft soils during creep. *Water Sci*. *Eng*. **6**, No 4 (2013), 446–455.Google Scholar

[131]

S.B. Yuste, L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. *SIAM J*. *Numer. Anal*. **42**, No 5 (2005), 1862–1874. CrossrefGoogle Scholar

[132]

M.A. Zaky, E.H. Doha, T.M. Taha, D. Baleanu, New recursive approximations for variable-order fractional operators with applications. *Math*. *Model*. *Anal*. **2**, No 2018 (2018), 1–28. Google Scholar

[133]

M. Zayernouri, G.E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. *J*. *Comput*. *Phys*. **293**, No C (2015), 312–338. CrossrefGoogle Scholar

[134]

F. Zeng, Z. Zhang, G.E. Karniadakis, A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations. *SIAM J*. *Sci*. *Comput*. **37**, No 6 (2015), 2710–2732. CrossrefGoogle Scholar

[135]

L. Zhang, S. Li, Regularity of weak solutions of the Cauchy problem to a fractional porous medium equation. *Bound*. *Value Probl*. **2015**, No 1 (2015), 1–6. Google Scholar

[136]

H. Zhang, F. Liu, The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions, *Numer*. *Math*. *A J*. *Chinese Univ*. *(Engl*. *Ser*.*)* **16**, No 2 (2007), # 181. Google Scholar

[137]

H. Zhang, F. Liu, M.S. Phanikumar, M.M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. *Comput*. *Math*. *Appl*. **66**, No 5 (2013), 693–701. CrossrefGoogle Scholar

[138]

X. Zhao, Z. Sun, G.E. Karniadakis, Second-order approximations for variable order fractional derivatives: Algorithms and applications. *J*. *Comput*. *Phys*. **293** (2015), 184–200. CrossrefGoogle Scholar

[139]

P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. *SIAM J*. *Numer*. *Anal*. **47**, No 3 (2009), 1760–1781. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.