Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2018: 1.08

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 22, Issue 6

Issues

An investigation on continuous time random walk model for bedload transport

ZhiPeng Li
  • State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Mechanics and Materials, Hohai University Nanjing, Jiangsu, 210098, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ HongGuang Sun
  • Corresponding author
  • State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Mechanics and Materials, Hohai University Nanjing, Jiangsu, 210098, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Renat T. Sibatov
Published Online: 2019-12-31 | DOI: https://doi.org/10.1515/fca-2019-0077

Abstract

Bedload particles in the armoring layer may experience a multi-scale effect and multiple mass transfer rates between mobile and immobile domains. Anomalous transport behaviors and retarded space evolution plume cannot be described by the normal diffusion equation. In this paper, we apply the continuous time random walk model with different distributions of waiting times to capture bedload transport behavior under different conditions. Experimental data indicate that fluctuations of diffusive rates for bedload transport can be captured by the truncated power law (TPL). The retarded plume evolution can be well characterized by an exponential distribution of waiting times and advection-diffusion equation with a retarded kernel. The heavy-tailed snapshots of bedload transport are interpreted in terms of mobile and immobile states.

MSC 2010: Primary 60G50; Secondary 82C41; 82C31; 60G22; 82C70; 82C80

Key Words and Phrases: bedload transport; continuous time random walk (CTRW); waiting time distribution; anomalous transport; mobile-immobile domains

This paper is dedicated to the memory of the late Professor Wen Chen

References

  • [1]

    C. Ancey, J. Heyman, A microstructural approach to bed load transport: mean behaviour and fluctuations of particle transport rates. J. Fluid. Mech. 744 (2014), 129–168.Web of ScienceCrossrefGoogle Scholar

  • [2]

    D. Baleanu, A.M. Lopes, Handbook of Fractional Calculus with Applications. De Gruyter (2019).Google Scholar

  • [3]

    B. Berkowitz, A. Cortis, M. Dentz, Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, No 2 (2006), RG2003.Google Scholar

  • [4]

    S. Bochner, Harmonic Analysis and the Theory of Probability. Berkeley University Press, Berkeley CA (1960).Google Scholar

  • [5]

    D.N. Bradley, G.E. Tucker, D.A. Benson, Fractional dispersion in a sand bed river. J. Geophs. Res-Earth. 115, No F1 (2010), F00A09.Google Scholar

  • [6]

    D.K. Burnel, S.K. Hansen, J. Xu, Transient modeling of non-Fickian transport and first-order reaction using continuous time random walk. Adv. Water. Resour. 107 (2017), 370–392.Web of ScienceCrossrefGoogle Scholar

  • [7]

    A.L. Chang, H.G. Sun, Time-space fractional derivative models for CO2 transport in heterogeneous media. Fract. Calc. Appl. Anal. 21, No 1 (2018), 151–173; ; https://www.degruyter.com/view/j/fca.2018.21.issue-1/fca-2018-0010/fca-2018-0010.xml.CrossrefWeb of Science

  • [8]

    D. Chen, H.G. Sun, Y. Zhang Fractional dispersion equation for sediment suspension. J. Hydrol. 491 (2013), 13–22.Web of ScienceCrossrefGoogle Scholar

  • [9]

    N. Chien, Z. Wan, Mechanics of Sediment Transport. American Society of Civil Engineers (1999).Google Scholar

  • [10]

    M. Colombini, A decades investigation of the stability of erodible stream beds. J. Fluid. Mech. 756 (2014), 1–4.CrossrefGoogle Scholar

  • [11]

    M. Dentz, H. Scher, D. Holder. B. Berkowitz, Transport behavior of coupled continuous-time random walks. Phys. Rev. E. 78, No 4 (2008), 041110.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    H.A. Einstein, Bedload transport as a probability problem. Sedimentation 1027 (1937), C1–C105.Google Scholar

  • [13]

    N. Fan, Y. Xie, R. Nie, Bed load transport for a mixture of particle sizes: Downstream sorting rather than anomalous diffusion. J. Hydrol. 553 (2017), 26–34.Web of ScienceCrossrefGoogle Scholar

  • [14]

    D. Fulger, E. Scalas, G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev. E. 77, No 2 (2008), ID 021122.Web of ScienceGoogle Scholar

  • [15]

    J. Gajda, M. Magdziarz, Fractional Fokker-Planck equation with tempered α-stable waiting times: Langevin picture and computer simulation. Phys. Rev. E. 82, No 1 (2010), ID 011117.Web of ScienceGoogle Scholar

  • [16]

    H.M. Habersack, Radio-tracking gravel particles in a large braided river in New Zealand: A field test of the stochastic theory of bed load transport proposed by Einstein. Hydrol. Process. 15, No 3 (2001), 377–391.CrossrefGoogle Scholar

  • [17]

    S.K. Hansen, Effective ADE models for first-order mobile–immobile solute transport: Limits on validity and modeling implications. Adv. Water. Resour. 86 (2015), 184–192.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    S.K. Hansen, V.V. Vesselinov, Local equilibrium and retardation revisited. Groundwater. 56, No 1 (2018), 109–117.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    J.K. Haschenburger, P.R. Wilcock, Partial transport in a natural gravel bed channel. Water. Resour. Res. 39, No 1 (2003), ID 1020.Google Scholar

  • [20]

    V. Kiryakova, A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11, No 2 (2008), 203–220; Available at: https://eudml.org/doc/11340.

  • [21]

    J. Klafter, I.M. Sokolov, First Steps in Random Walks: From Tools to Applications. Oxford University Press (2011).Google Scholar

  • [22]

    V. Kolokoltsov, V. Korolev, V. Uchaikin, Fractional stable distributions. J. Math. Sci. 105, No 6 (2001), 2569–2576.CrossrefGoogle Scholar

  • [23]

    I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E. 52, No 1 (1995), ID 1197.CrossrefGoogle Scholar

  • [24]

    M. Kotulski, Asymptotic distributions of continuous-time random walks: a probabilistic approach. J. Stat. Phys. 81, No 3-4 (1995), 777–792.CrossrefGoogle Scholar

  • [25]

    E. Lajeunesse, O. Devauchelle, F. Lachaussée, P. Claudin, Bedload transport in laboratory rivers: the erosion-deposition model. In: Gravel-bed Rivers: Gravel Bed Rivers and Disasters, Wiley-Blackwell, Oxford (2017), 415–438.Google Scholar

  • [26]

    Z.P. Li, H.G. Sun, Y. Zhang, D. Chen, T.S. Renat, Continuous time random walk model for non-uniform bed-load transport with heavy-tailed hop distances and waiting times. J. Hydrol. 578 (2019), ID 124057.Web of ScienceCrossrefGoogle Scholar

  • [27]

    D.V. Malmon, T. Dunne, S.L. Reneau, Predicting the fate of sediment and pollutants in river floodplains. Environ. Sci. Technol. 36, No 9 (2002), 2026–2032.CrossrefPubMedGoogle Scholar

  • [28]

    R.N. Mantegna, E.H. Stanley, Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. Phys. Rev. Lett. 73, No 22 (1994), ID 2946.CrossrefGoogle Scholar

  • [29]

    R.L. Martin, D.J. Jerolmack, R. Schumer, The physical basis for anomalous diffusion in bed load transport. J. Geophs. Res.-Earth. 117, No F1 (2012), ID F01018.Google Scholar

  • [30]

    M.M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35, No 17 (2008), ID 17403.Web of ScienceCrossrefGoogle Scholar

  • [31]

    M.M. Meerschaert, Y. Zhang, B. Baeumer, Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, No 3 (2010), 1078–1086.CrossrefWeb of ScienceGoogle Scholar

  • [32]

    G.L. Morris, J.Fan, Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use. McGraw Hill Professional (1998).Google Scholar

  • [33]

    C.B. Phillips, R.L. Martin, D.J. Jerolmack, Impulse framework for unsteady flows reveals superdiffusive bed load transport. Geophys. Res. Lett. 40, No 7 (2013), 1328–1333.CrossrefWeb of ScienceGoogle Scholar

  • [34]

    L. Ridolfi, P. D’Odorico, F. Laio, Noise-Induced Phenomena in the Environmental Sciences. Cambridge University Press (2011).Google Scholar

  • [35]

    J.C. Ritchie, J.R. McHenry, Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J. Environ. Qual. 19, No 2 (1990), 215–233.CrossrefGoogle Scholar

  • [36]

    J.C. Roseberry, M.W. Schmeeckle, D.J. Furbish, A probabilistic description of the bed load sediment flux: 2. Particle activity and motion. J. Geophs. Res-Earth. 117, No F3 (2012), ID F03032.Google Scholar

  • [37]

    J. Rosiński, Tempering stable processes. Stoch. Proc. Appl. 117, No 6 (2007), 677–707.CrossrefGoogle Scholar

  • [38]

    R. Schumer, M.M. Meerschaert, B. Baeumer, Fractional advection-dispersion equations for modeling transport at the Earth surface. J. Geophs. Res-Earth. 114, No F4 (2009), ID F00A07.Google Scholar

  • [39]

    R.T. Sibatov, H.G. Sun, Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder. Fractal. Fract. 3, No 4 (2019), ID 47.CrossrefWeb of ScienceGoogle Scholar

  • [40]

    R.T. Sibatov, V.V. Uchaikin, Fractional differential approach to dispersive transport in semiconductors. Phys-Usp+. 52, No 10 (2009), ID 1019.CrossrefWeb of ScienceGoogle Scholar

  • [41]

    R.T. Sibatov, V.V. Uchaikin, Truncated Lévy statistics for dispersive transport in disordered semiconductors. Commun. Nonlinear. Sci. 16, No 12 (2011), 4564–4572.Web of ScienceCrossrefGoogle Scholar

  • [42]

    H.G. Sun, D. Chen, Y. Zhang, Understanding partial bed-load transport: Experiments and stochastic model analysis. J. Hydrol. 521 (2015), 196–204.Web of ScienceCrossrefGoogle Scholar

  • [43]

    V.V. Uchaikin, R.T. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics, and Nanosystems. World Scientific (2013).Google Scholar

  • [44]

    P.P. Valkó, J. Abate, Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion. Comput. Math. Appl. 48, No 3-4 (2004), 629–636.CrossrefGoogle Scholar

  • [45]

    H. Voepel, R. Schumer, M.A. Hassan, Sediment residence time distributions: Theory and application from bed elevation measurements. J. Geophs. Res-Earth. 118, No 4 (2013), 2557–2567.Google Scholar

  • [46]

    W. Wu, Computational River Dynamics. CRC Press (2007).Google Scholar

  • [47]

    Y. Zhang, R.L. Martin, D. Chen, A subordinated advection model for uniform bed load transport from local to regional scales. J. Geophs. Res.-Earth. 119, No 12 (2014), 121–168.Google Scholar

  • [48]

    Y. Zhang, M.M. Meerschaert, Gaussian setting time for solute transport in fluvial systems. Water. Resour. Res. 47, No 8 (2011), ID W08601.Web of ScienceGoogle Scholar

About the article

Received: 2019-07-15

Published Online: 2019-12-31

Published in Print: 2019-12-18


Citation Information: Fractional Calculus and Applied Analysis, Volume 22, Issue 6, Pages 1480–1501, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.1515/fca-2019-0077.

Export Citation

© 2019 Diogenes Co., Sofia.Get Permission

Comments (0)

Please log in or register to comment.
Log in