Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Fractional Calculus and Applied Analysis

Editor-in-Chief: Kiryakova, Virginia


IMPACT FACTOR 2018: 3.514
5-year IMPACT FACTOR: 3.524

CiteScore 2018: 3.44

SCImago Journal Rank (SJR) 2018: 1.891
Source Normalized Impact per Paper (SNIP) 2018: 1.808

Mathematical Citation Quotient (MCQ) 2018: 1.08

Online
ISSN
1314-2224
See all formats and pricing
More options …
Volume 22, Issue 6

Issues

Porous functions

Igor Podlubny
Published Online: 2019-12-31 | DOI: https://doi.org/10.1515/fca-2019-0078

Abstract

A new approach to modeling the geometric structure of real materials based on a new type of functions – porous functions – is introduced. The general concept, basic operations, operations of calculus, visualization and interpretations, and potential applications of porous functions are outlined.

MSC 2010: Primary 26A33; Secondary 76S99; 65C99

Key Words and Phrases: porous function; porous interval; granular interval; fractional calculus

Dedicated to the memory of the late Professor Wen Chen, a man of open mind and creativity

References

  • [1]

    V.I. Arnold, Experimental Mathematics. FAZIS, Moscow (2005) (In Russian).Google Scholar

  • [2]

    L. Bukovsky, The Structure of the Real Line. Birkhäuser, Basel (2011).Web of ScienceGoogle Scholar

  • [3]

    G. Cantor, Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. für die Reine und Angewandte Mathematik, 77 (1874), 258–262.Google Scholar

  • [4]

    A.M. Elshurafa, M.N. Almadhoun, K.N. Salama, H.N. Alshareef, Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett. 102 (2013), 232901, .CrossrefWeb of ScienceGoogle Scholar

  • [5]

    A.Kh. Gil’mutdinov, P.A. Ushakov, Physical implementation of elements with fractal impedance: state of the art and prospects. J. of Communications Technology and Electronics 62, No 5 (2017), 441–453; .CrossrefWeb of ScienceGoogle Scholar

  • [6]

    D.A. John, S. Banerjee, G.W. Bohannan, and K. Biswas, Solid-state fractional capacitor using MWCNT-epoxy nanocomposite. Appl. Phys. Lett. 110 (2017), Art. # 163504; .CrossrefWeb of ScienceGoogle Scholar

  • [7]

    H. Lebesgue, Sur le développement de la notion d’intégrale. Revue de Métaphysique et de Morale, 34, No 2 (1927), 149–167.Google Scholar

  • [8]

    J. Lindenstrauss, D. Preiss, J. Tišer, Fréchet Differentiability of Lip-schitz Functions and Porous Sets in Banach Spaces. Princeton University Press, Princeton (2012).Google Scholar

  • [9]

    I. Newton, Mathematical Principles of Natural Philosophy. (Transl.by A. Motte, Edited by F. Cajori), Berkeley (1934).Google Scholar

  • [10]

    I. Newton, Opuscula Mathematica, Philosophica et Philologica, Tomus Primus, Mathematica. Marcum-Michaelem Bousquet, Lausannæ & Genevæ (1744).Google Scholar

  • [11]

    Sh. Tu, Q. Jiang, X. Zhang, H. N. Alshareef, Solid state MXene based electrostatic fractional capacitors. Appl. Phys. Lett. 114 (2019), Art. # 232903; .CrossrefWeb of ScienceGoogle Scholar

  • [12]

    G.J. Whitrow, The Natural Philosophy of Time. Thomas Nelson and Sons Ltd., London and Edinburgh (1961).Google Scholar

About the article

Received: 2019-07-10

Published Online: 2019-12-31

Published in Print: 2019-12-18


Citation Information: Fractional Calculus and Applied Analysis, Volume 22, Issue 6, Pages 1502–1516, ISSN (Online) 1314-2224, ISSN (Print) 1311-0454, DOI: https://doi.org/10.1515/fca-2019-0078.

Export Citation

© 2019 Diogenes Co., Sofia.Get Permission

Comments (0)

Please log in or register to comment.
Log in