Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Folia Horticulturae

The Journal of Polish Society for Horticultural Sciences (PSHS)

2 Issues per year

IMPACT FACTOR 2016: 0.359

Open Access
See all formats and pricing
More options …

Callus induction in papaya (Carica papaya L.) and synseed production for low temperature storage and cryopreservation

Jaime A. Teixeira da Silva
  • Corresponding author
  • Faculty of Agriculture and Graduate School of Agriculture Kagawa University, Miki cho, Kita Gun, Ikenobe, 761-0795, Japan
  • Current address: P. O. Box 7, Ikenobe 3011-2 Miki-cho, Kita-gun, Kagawa, 761-0799, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-27 | DOI: https://doi.org/10.1515/fhort-2015-0007


The mid- to long-term preservation of papaya (Carica papaya L.) would allow for the safeguarding of important germplasm. In this study, soft friable callus (SFC) and hard callus (HC) were induced from the first two true leaves of 10-day-old seedlings containing a midrib derived from the germinated seed of two cultivars (‘Rainbow’ and ‘Sunrise Solo’). Following germination on a Murashige and Skoog (MS) medium that contained 3% sucrose and was free of plant growth regulators (PGRs), sections of the first true leaves from 10-day-old seedlings were exposed to seven published callus or somatic embryogenesis protocols for zygotic embryos, leaves or hypocotyls. Optimal SFC and HC induction was carried out on a half-strength MS medium following the Fitch (1993) or the Ascêncio-Cabral et al. (2008) protocol, respectively. SFC formed shoots that could then convert to plants when transferred to a full-strength MS medium devoid of PGRs. Plantlets 10-cm tall were acclimatised in two steps: first by in vitro acclimatisation in aerated vessels, the Vitron, under CO2-enriched (3000 ppm CO2), then by the transfer of individually rooted plantlets in Rockwool® blocks to a substrate of soil: pine bark : perlite (1:1:1, v/v/v). SFC and HC were then encapsulated in alginate beads, which were exposed to low temperature storage (LTS) at 10°C and 15°C, and also cryopreserved for 30 days. All encapsulated alginate beads that contained SFC, HC or leaf tissue that had been stored under LTS or cryopreserved were able to regenerate callus when placed on an optimal callus induction medium. Plants derived from the control, LTS and cryopreservation protocols, either from SFC or HC, were successfully acclimatised.

Keywords: acclimatisation; callus; encapsulated alginate bead; Murashige and Skoog; paw-paw


  • Anandan R., Sudhakar D., Balas ubra manian P., Gutiérr ez-Mora A., 2012. In vitro somatic embryogenesis from suspension cultures of Carica papaya L. Sci. Hortic. 136: 43-49.Web of ScienceCrossrefGoogle Scholar

  • Ascêncio-Cabra l A., Gutiérr ez-Pulido H., Rodríguez- Gara y B., Gutiérr ez-Mora A., 2008. Plant regeneration of Carica papaya L. through somatic embryogenesis in response to light quality, gelling agent and phloridzin. Sci. Hortic. 118(2): 155-160.Web of ScienceCrossrefGoogle Scholar

  • Ashmore S.E., Drew R.A., Azimi M., 2007. Vitrificationbased shoot-tip cryopreservation of Carica papaya and a wild relative Vasconcellea pubescens. Australian J. Bot. 55: 541-547.Web of ScienceGoogle Scholar

  • Bhattachar ya J., Khusp e S.S., 2000. 2,4,5-T induced somatic embryogenesis in papaya (Carica papaya L.). J. Applied Hortic. 2(2): 84-87.Google Scholar

  • Canini A., Alesiani D., D’Arcangelo G., Tag liatesta P., 2007. Gas chromatography-mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J. Food Comp. Anal. 20(7): 584-590.Google Scholar

  • Cas tillo B., Smith M.A.L., Yafava U.L., 1998. Plant regeneration from encapsulated somatic embryos of Carica papaya L. Plant Cell Rep. 17: 172-176.Google Scholar

  • Cha-um S., Kirdmanee C., 2007. Minimum growth in vitro culture for preservation of plant species. Fruit, Vegetable, Cereal Sci. Biotechnol. 1(1): 13-25.Google Scholar

  • Chen M.H., Wang P.J., Maeda E., 1987. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants. Plant Cell Rep. 6: 348-351.CrossrefPubMedGoogle Scholar

  • Engelmann F., 2011. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell. Dev. Biol. - Plant 47(1): 5-16.Google Scholar

  • Farzana A.R.F., Palkadapa la P.G.V.N., Meddegoda K.M.M.N., Samaraj eewa P.K., Eeswara J.P., 2008. Somatic embryogenesis in papaya (Carica papaya L. cv. Rathna). J. Nat. Sci. Found. Sri Lanka 36(1): 41-50.Google Scholar

  • Fernando J.A., Melo M., Soar es M.K.M., App ezzatoda- Glória B., 2001. Anatomy of somatic embryogenesis in Carica papaya L. Brazilian Archives Biol. Technol. 44(3): 247-255.CrossrefGoogle Scholar

  • Fitch M.M.M., 1993. High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell Tissue Organ Cult. 32(2): 205-212.CrossrefGoogle Scholar

  • Fitch M.M.M., Manshar dt R.M., 1990. Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant Cell Rep. 9(6): 320-324.Google Scholar

  • Giang D.T.T., Van P.T., Tanaka M., Teixeira da Silva J.A., 2011. Sterilization and germination of papaya (Carica papaya L.) seed and response to LEDs. Seed Sci. Biotechnol. 5(1): 56-58.Google Scholar

  • Jiménez V.M., Mora -Newcomer E., Gutiérr ez-Soto M.V., 2014. Biology of the papaya plant. In: Ming R, Moore PH (eds), Genetics and Genomics of Papaya, Plant Genetics and Genomics: Crops and Models 10, Springer Science+Business Media, New York, 17-33.Google Scholar

  • Kaity A., Ashmore S.E., Drew R.A., Dulloo M.E., 2008. Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep. 27: 1529-1539.Web of SciencePubMedCrossrefGoogle Scholar

  • Litz R.E., Conover R.A., 1982. In vitro somatic embryogenesis and plant regeneration from Carica papaya L. ovular callus. Plant Sci. Lett. 26: 153-158.CrossrefGoogle Scholar

  • Malaba di R.B., Vija ykumar S., Mulgund G.S., Nataraja K., 2011. Induction of somatic embryogenesis in papaya (Carica papaya). Res. Biotechnol. 2(5): 40-55.Google Scholar

  • Muras hige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-499.Google Scholar

  • Shar ma S., Shahzad A., Teixeira da Silva J.A., 2013. Synseed technology - a complete synthesis. Biotechnol. Adv. 31: 186-207.CrossrefWeb of ScienceGoogle Scholar

  • Teixeira da Silva J.A., 2013a. Cryopreservation of hybrid Cymbidium protocorm-like bodies by encapsulationdehydration and vitrification: impact on explant survival and success of synseed germination. In Vitro Cell. Dev. Biol. - Plant 49(6): 690-698.Google Scholar

  • Teixeira da Silva J.A., 2013b. In vitro axillary root induction in papaya (Carica papaya L.). J. Plant Dev. 20: 51-55.Google Scholar

  • Teixeira da Silva J.A., 2014. Photoautotrophic micropropagation of papaya (Carica papaya L.) and response of seed and seedlings to light-emitting diodes (LEDs). Thammasat Int. J. Sci. Technol. 19(1): 57-71.Google Scholar

  • Teixeira da Silva J.A., Giang D.T.T., Tanaka M., 2006. Novel photoautotrophic micropropagation of Spathiphyllum. Photosynthetica 44(1): 53-61.CrossrefGoogle Scholar

  • Teixeira da Silva J.A., Giang D.T.T., Tanaka M., 2005a. Micropropagation of sweet potato (Ipomoea batatas) in a novel CO2-enriched vessel. J. Plant Biotechnol. 7(1): 67-74.Google Scholar

  • Teixeira da Silva J.A., Giang D.T.T., Tanaka M., 2005b. Effective acclimatization of Epidendrum in vitro using a novel micropropagation vessel. Biotechnology 4(3): 214-220.Google Scholar

  • Teixeira da Silva J.A., Giang D.T.T., Tanaka M., 2005c. In vitro acclimatization of banana and Cymbidium. Int. J. Bot. 1(1): 41-49.Google Scholar

  • Teixeira da Silva J.A., Kim H-Y., Engelmann F., 2014. Chrysanthemum low-temperature storage, cryopreservation and synseed technology. Plant Cell Tissue Organ Cult. (in press) Web of ScienceGoogle Scholar

  • Teixeira da Silva J.A., Ras hid Z., Nhut D.T., Sivakumar D., Gera A., Souza Jr. M.T., Tennant P.F., 2007. Papaya (Carica papaya L.) biology and biotechnology. Tree Forestry Sci. Biotechnol. 1(1): 47-73.Google Scholar

  • Tennant P.F., 2010. Transgenic papaya. Transgenic Plant J. 4(special issue 1): 1-96.Google Scholar

  • Tsa i S-F., Yeh S-D., Chan C-F., Liaw S-L., 2009. Highefficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of transgenic papaya lines. Plant Cell Tiss. Org Cult. 98: 157-164. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2015-01-27

Published in Print: 2014-12-01

Citation Information: Folia Horticulturae, ISSN (Online) 2083-5965, DOI: https://doi.org/10.1515/fhort-2015-0007.

Export Citation

© by Jaime A. Teixeira da Silva. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in