Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Folia Oecologica

2 Issues per year

Open Access
Online
ISSN
1338-7014
See all formats and pricing
More options …

Contents of nutrients and arsenic in litterfall and surface humus in mature nudal beech stands subjected to different emission-immission loads

Katarína Gašová
  • Corresponding author
  • Department of Soil and Plant Ecology, Institute of Forest Ecology of the Slovak Academy of Sciences, Ľ. Štúra 2, 960 53 Zvolen, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Margita Kuklová
  • Department of Soil and Plant Ecology, Institute of Forest Ecology of the Slovak Academy of Sciences, Ľ. Štúra 2, 960 53 Zvolen, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ján Kukla
  • Department of Soil and Plant Ecology, Institute of Forest Ecology of the Slovak Academy of Sciences, Ľ. Štúra 2, 960 53 Zvolen, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-30 | DOI: https://doi.org/10.1515/foecol-2017-0002

Abstract

The aim of the paper was to compare the litterfall and surface humus (Oo) quality in nudal beech stands with different emission-immission load from the Al smelter Žiar nad Hronom. The study was carried out in the Kremnické vrchy Mts (control stand, 18 km from the emission source) and the Štiavnické vrchy Mts (stressed stand, 1.5 km from the emission source), both in Central Slovakia. The contents of arsenic and nutrients (Cat, Mgt, Kt, Nat), with exception of calcium in the beech litterfall from the stressed stand were markedly higher (by 4.3%, 23.9%, 2.1% and 87.9%, respectively) compared to the samples taken from the control plot. On the contrary, the surface humus samples (with the exception of Na in the necrotic Oon subhorizon) from control plot were richer in nutrients. However, significant differences (p < 0.01) between the plots were observed for Ca content in the litterfall as well as in the surface humus. The concentrations of As in Oo samples from the stressed stand mainly increased with the organic horizon depth (mg kg-1): necrotic Oon 1.10 < fermentation Oof 3.1 < humification Ooh 55.6. The results showed, that As amounts detected in subhorizon Ooh and in beech litterfall from the stressed stand were higher than the limit values, thus indicating that the environment of the Žiar territory is exposed to persistent negative impacts of industrial activities.

Keywords: arsenic; litterfall; mature beech forests; nutrients; surface humus

References

  • Zákon č. 220/2004 o ochrane a využívaní poľnohospodárskej pôdy. Príloha 2 - Limitné hodnoty rizikových látok v poľnohospodárskej pôde [Act No. 220/2004 on protection and use of agricultural soil. Appendix 2 - Limit values of risk elements in agricultural soil].Google Scholar

  • Adriano, D.C., 2002. Trace elements in the terrestrial environment. New York: Springer. 867 p.Google Scholar

  • Augusto, A., Dupouey, J.L., Ranger, J., 2003. Effect of tree species on understory vegetation and environmental conditions in temperate forests. Annals of Forest Science, 60: 823-831.Google Scholar

  • Augusto, L., Ranger, J., Binkley, D. Rothe, A., 2002. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 59: 233-253.Google Scholar

  • Bech, J., Poschenrieder, C., Llugany, M., Barceló, J., Tume, P., Tobias, F.J., Barranzuela, J.L., Vásquez, E.R., 1997. Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Science of the Total Environment, 203: 83-91.Google Scholar

  • Berger, T. W., Untersteiner, H., Toplitzer, M., Neubauer, Ch., 2009. Nutrient fluxes in pure and mixed stands of spruce (Picea abies) and beech (Fagus sylvatica). Plant and Soil, 322: 317-342.Web of ScienceGoogle Scholar

  • Bieńkowski, P., Titlyanova, A.A., Shibareva, S.V., 2006. Chemical properties of litter of forest and grassland ecosystems: transect studies in Siberia (Russia). Polish Journal of Ecology, 54: 91-104.Google Scholar

  • Bublinec, E., 1994. Koncentrácia, akumulácia a kolobeh prvkov v bukovom a smrekovom ekosystéme [Concentration, accumulation and cycling of elements in beech and spruce ecosystems]. Acta Dendrobiologica. Bratislava: Veda. 132 p.Google Scholar

  • Carnol, M., Bazgir, M., 2013. Nutrient return to the forest floor through litter and througufall under 7 forest species after conversion from Norway spruce. Forest Ecology and Management, 309: 66 - 75.Google Scholar

  • Ditmarová, Ľ., KmeŤ, J., 2002. Physiological and biochemical aspects of stress impact on beech saplings growing under varying site conditions. Biologia, Bratislava, 57: 533-540.Google Scholar

  • Dubová, M., Bublinec E., 2006. Evaluation of sulphur and nitrate-nitrogen deposition to forest ecosystems. Ekológia (Bratislava), 25: 366-376.Google Scholar

  • Geisler, R., Hogberg, M., Hogberg, P., 1998. Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology, 79: 119-137.Google Scholar

  • González-Arias, A., Amezaga, I., Echeandia, A., Domingo, M., Onaindia, M., 1998. Effects of pollution on the nutrient return vialitterfall for Pinus radiata plantations in the Basque Country. Plant Ecology, 139: 247-258.Google Scholar

  • IUSS Working Group WRB. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, No. 106. Rome: FAO. 193 p.Google Scholar

  • Izakovičová, Z., Miklós, L., Pauditšová, E., 1998. Ecological problems resulting from the conflict of interest in Žiarska kotlina region. Životné Prostredie, 32 (6): 318-324.Google Scholar

  • Jamnická, G., Bučinová, K., Havranová, I., Urban, A., 2007. Current state of mineral nutrition and risk elements in a beech ecosystem situated near the aluminium smelter in Žiar nad Hronom, Central Slovakia. Forest Ecology and Management, 248 (1-2): 26-35.Google Scholar

  • Kavvadias, V.A., Alifragis, D., Tsiontsis, A., Brosfas, G., Stamatelos, G., 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management, 144 (1): 113-127.Google Scholar

  • Kobza, J., Gašová, K., 2014. Soil monitoring system as a basic tool for protection of soils and sustainable land use in Slovakia. Journal of Agricultural Science and Technology, 4: 504-513.Google Scholar

  • Kuklová, M., Hniličková, H., Kukla, J., Hnilička, F., 2015. Environmental impact of the Al smelter on physiology and macronutrient contents in plants and Cambisols. Plant, Soil and Environment, 61: 72 - 78.Google Scholar

  • Langenbruch, Ch., Helfrich, M., Flessa, H., 2012. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil, 352 (1): 389 - 403.Web of ScienceGoogle Scholar

  • Liao, J.H., Wang, H.H., Tsai, Ch.Ch., Hseu, Z.Y., 2006. Litter production, decomposition and nutrient return of uplifted coral reef tropical forest. Forest Ecology and Management, 235 (1-3): 174-185.Google Scholar

  • Markert, B., 1995. Instrumental multielement analysis in plant materials. A modern method in environmental chemistry and tropical system research. Série Tecnologia Ambiental, 8. Rio de Janeiro: CETEM. 33 p.Google Scholar

  • Miklós, L. et al. (eds.), 2002. Atlas krajiny Slovenskej republiky [Landscape atlas of the Slovak Republic]. Bratislava: Ministerstvo životného prostredia SR. 343 p.Google Scholar

  • Neirynck, J., Mirtcheva, S., Sioen, G., Lust, N., 2000. Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L., and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of loamy topsoil. Forest Ecology and Management, 133 (3): 275-286.Google Scholar

  • Novák, J., Dušek, D., Slodičák, M., 2014. Quantity and quality of litterfall in young oak stands. Journal of Forest Science, 60: 219-225.Google Scholar

  • Novák, M., Emmanuel, S., Vile, M.A., Erel, Y., Veron, A., Paces, T., Wieder, R.K., Vanecek, M., Stepanova, M., Brizova, E., Hovorka, J., 2003. Origin of lead in eight Central European peat bogs determined from isotope ratios, strengths, and operation times of regional pollution sources. Environmental Science and Technology, 37: 437-445.Google Scholar

  • Pelíšek, J., 1964. Lesnické půdoznalectví [Pedology basics]. Praha: SZN. 568 p.Google Scholar

  • Porter, E.K., Peterson, P.J., 1975. Arsenic accumulation by plants on mine waste (United Kingdom). Science of the Total Environment, 4 (4): 365-371.CrossrefGoogle Scholar

  • Shotyk, W., Weiss, D., Appleby, P.G., Cheburkin, A.K., Frei, R., Gloor, M., Kramers, J.D., Reese, S., Van Der Knaap, W.O., 1998. History of atmospheric lead deposition since 12,370 14C yr BP from a Peat Bog, Jura Mountains. Switzerland. Science, 281: 1635-1640.Google Scholar

  • Slovalco, 2014. Statistics, the quantities of pollutants in emissions in 1997-2014 [cit. 2016-06-13]. https://www.slovalco.sk/web/homepage_ns.nsf/mainFrameset?OpenFrameseGoogle Scholar

  • Societas pedologica slovaca, 2014. Morfogenetický klasifikačný systém pôd Slovenska. Bazálna referenčná taxonómia [Morphogenetic soil classification system of Slovakia. Basal reference taxonomy]. Bratislava: NPPC - VÚPOP. 96 p.Google Scholar

  • Staelens, J., Nachtergale, L., Schrijver, A., Vanhellemont, M., Wuyts, K., Veheyen, K., 2011. Spatio-temporal litterfall dynamics in a 60-year-old mixed deciduous forest. Annals of Forest Science, 68: 89-98.Web of ScienceGoogle Scholar

  • Swank, W., 1986. Biological control of solute losses from forest ecosystems. In Trudgill, S. T. (ed.). Solute processes. London: John Wiley and Sons, p. 85-139.Google Scholar

  • Šimková, I., 2014. Vplyv porastotvornej dreviny na vlastnosti lesných pôd a diverzitu fytocenóz [Influence of edificator tree species on the properties of forest soils and diversity of phytocoenoses]. PhD thesis. Zvolen: Technical University in Zvolen, Faculty of Ecology and Environmental Sciences. 121 p.Google Scholar

  • Šimková, I., Kuklová, M., Kukla, J., 2014. Accumulation of Ct and Nt in humus and mineral soil layers: the effect of change of tree species composition in nudal beech forests. Folia Oecologica, 41: 82-91.Google Scholar

  • Tang, R., Wang, H., Luo, J., Gong, Y., She, J., Chen, Y., Dandan, Y., Zhan, J., 2015. Spatial distribution and temporal trends of mercury and arsenic in remote timberline coniferous forests, eastern of the Tibet Platau, China. Environmental Science and Pollution Research International, 22: 11658-11668.Google Scholar

  • Temple, P.J., Linzon, S.N., Chai, B.L., 1977. Contamination of vegetation and soil by arsenic emissions from secondary lead smelters. Environmental Pollution, 12 (4): 311-320.CrossrefGoogle Scholar

  • Vitousek, P. M., Sanford, R. L., 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17: 137-167.Google Scholar

  • Wannaz, E.D., Rodriguez, J.H., Wolfsberger, T., Carreras, H.A., Pignata, M.L., Fangmeier, A., Franzaring, J., 2012. Accumulation of aluminium and physiological status of tree foliage in the vicinity of large aluminium smelter. The Scientific World Journal, vol. 112, Article ID 865927: 7 pages.Google Scholar

  • Wulf, M., Naaf, T., 2009. Herb layer response to broadleaf tree species with different leaf litter quality and canopy structure in temperate forests. Journal of Vegetation Science, 20: 517-526.Web of ScienceGoogle Scholar

  • Xiaogai, G., Lixiong, Z., Wenfa, X., Zhilin, H., Xiansheng, G., Benwang, T., 2013. Effect of litter substrate quality and soil nutrients on forest litter decomposition: a review. Acta Ecologica Sinica, 33: 102-108.Google Scholar

  • Zlatník, A., 1976. The survey of groups of types of geobiocoenoses primarily forest and shrubby in the C.S.S.R. News of Geographic Institute Brno, 13: 55-64.Google Scholar

About the article

Received: 2016-10-06

Accepted: 2016-11-04

Published Online: 2017-08-30

Published in Print: 2017-06-27


Citation Information: Folia Oecologica, ISSN (Online) 1338-7014, DOI: https://doi.org/10.1515/foecol-2017-0002.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in