Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Folia Oecologica

2 Issues per year

Open Access
See all formats and pricing
More options …

Salinity tolerance of Dodonaea viscosa L. inoculated with plant growth-promoting rhizobacteria: assessed based on seed germination and seedling growth characteristics

Sonia Yousefi / Davoud Kartoolinejad / Mohammad Bahmani
  • Young Researcher and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reza Naghdi
  • Corresponding author
  • Department of Engineering of Wood and Paper Industries, Faculty of Natural Resources, Semnan University, Semnan, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-30 | DOI: https://doi.org/10.1515/foecol-2017-0003


The study was conducted to evaluate the potential of different strains of plant growth-promoting rhizobacteria (PGPR) to reduce the effects of salinity stress on the medicinal hopbush plant. The bacterium factor was applied at five levels (non-inoculated, inoculated by Pseudomonas putida, Azospirillum lipoferum + Pseudomonas putida, Azotobacter chroococcum + Pseudomonas putida, and Azospirillum lipoferum + Azotobacter chroococcum + Pseudomonas putida), and the salinity stress at six levels: 0, 5, 10, 15, 20, and 50 dS m-1. The results revealed that Pseudomonas putida showed maximal germination percentage and rate at 20 dS m-1 (18.33% and 0.35 seed per day, respectively). The strongest effect among the treatments was obtained with the treatment combining the given 3 bacteria at 15 dS m-1 salinity stress. This treatment increased the root fresh and dry weights by 31% and 87.5%, respectively (compared to the control). Our results indicate that these bacteria applied on hopbush affected positively both its germination and root growth. The plant compatibility with the three bacteria was found good, and the treatments combining Pseudomonas putida with the other one or two bacteria discussed in this study can be applied in nurseries in order to restore and extend the area of hopbush forests and akin dry stands.

Keywords: arid lands; germination characteristics; growth-promoting bacteria; hopbush; saline soils


  • Abbas-zadeh, P., Saleh-rastin, N., Asadi-rahmani, H., Khavazi, K., Soltani, A., Shoary-nejati, A.R., Miransari, M., 2010. Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiologiae Plantarum, 32: 281−288.Web of ScienceCrossrefGoogle Scholar

  • Ahmad, M., Mahmood, Q., Gulzar, K., Akhtar, M.S., Saleem, M., Qadir, M.I., 2012. Antihyperlipidaemic and hepatoprotective activity of Dodonaea viscosa leaves extracts in alloxan-induced diabetic rabbits (Oryctolagus cuniculus). Pakistan Veterinary Journal, 32: 50−54.Google Scholar

  • Bashan, Y., De-bashan, L.E., 2010. Chapter two - how the plant growth-promoting bacterium Azospirillum promotes plant growth - a critical assessment. Advances in Agronomy, 108: 77−136.CrossrefGoogle Scholar

  • Belimov, A.A., Hotzeas, N., Safronova, V.I., Demchinskaya, S.V., Piluzza, G., Bullitta, S., Glick, B.R., 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37: 241−250.Google Scholar

  • Biradar, K.S., Salimath, P.M., Ravikumar, R.L., 2010. Genetic variability for seedling vigour, yield and yield components in local germplasm collections of greeng ram (Vigna radiata (L.) Wilczek). Karnataka Journal of Agricultural Sciences, 20: 608-609.Google Scholar

  • Fu, Q., Liu, C., Ding, N., Lin, Y., Guo, B., 2010. Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, 97: 1994−2000.CrossrefWeb of ScienceGoogle Scholar

  • Glick, B.R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J., Mcconkey, B., 2007. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences, 26: 227−242.CrossrefWeb of ScienceGoogle Scholar

  • Grichko, V.P., Glick, B.R., 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39: 11−17.CrossrefGoogle Scholar

  • Haghighi, M., Da Silva, J.A.T., 2014. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. Journal of Crop Science and Biotechnology, 17: 201−208.CrossrefGoogle Scholar

  • Hamaoui, B., Abbadi, J., Burdman, S., Rashid, A., Sarig, S., Okon, Y., 2001. Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie, 21: 553−560.CrossrefGoogle Scholar

  • Kanchana, D., Jayanthi, M., Usharani, G., Saranraj, P., Sujitha, D., 2014. Interaction effect of combined inoculation of PGPR on growth and yield parameters of Chili var K1 (Capsicum annuum L.). International Journal of Microbiological Research, 5: 144−151.Google Scholar

  • Kefela, T., Gachomo, E.W., Kotchoni, S.O., 2015. Paenibacillus polymyxa, Bacillus licheniformis and Bradyrhizobium japonicum IRAT FA3 promote faster seed germination rate, growth and disease resistance under pathogenic pressure. Journal of Plant Biochemistry and Physiology, 3: 1−5.Google Scholar

  • Kulkarni, M.G., Street, R.A., Staden, J.V., 2007. Germination and seedling growth requirements for propagation of Diosscorea dregeana (Kunth) Dur. and Schinz Atuberous medicinal plant. South African Journal of Botany, 33: 131-137.CrossrefGoogle Scholar

  • Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651−681.Web of ScienceCrossrefGoogle Scholar

  • Muthukumran, P., Begumand, V.H., Kalaiarasan, P., 2011. Anti-diabetic activity of Dodonaea viscosa (L) leaf extracts. International Journal of Pharm-Tech Research, 3: 136−139.Google Scholar

  • Noumavo‚ A.P., Kochoni, E.‚ Didagbé, O.Y.‚ Adjanohoun, A.‚ Allagbé, M.‚ Sikirou, R.‚ Gachomo, E.W.‚ Kotchoni, S.O.‚ Baba-Moussa, L., 2013. Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. American Journal of Plant Sciences, 4: 1013−1021.CrossrefGoogle Scholar

  • Nourmohammadi, K., Rahimi, D., Naghdi, R., Kartoolinejad, D., 2016. Effects of physical and chemical treatments of seed dormancy breaking on seedling quality index (QI) of Caspian locust (Gleditsia caspica Desf.). Austrian Journal of Forest Science, 133: 157−171.Google Scholar

  • Panwar, P., Bhardwaj, S.D., 2005. Handbook of practical forestry. Jodhpur: Agrobios. 192 p.Google Scholar

  • Rahimi, D., Kartoolinejad, D., Nourmohammadi, K., Naghdi, R., 2016. Increasing drought resistance of Alnus subcordata CA Mey. seeds using a nano priming technique with multi-walled carbon nanotubes. Journal of Forest Science, 62: 269−278.CrossrefGoogle Scholar

  • Rajamanickam, V., Rajasekaran, A., Anandarajagopal, K., Sridharan, D., Selvakumar, K., Stephen Rathinaraj, B., 2010. Anti-diarrheal activity of Dodonaea viscosa root extracts. International Journal of Pharma and Bio Sciences, 1: 182−185.Google Scholar

  • Saleem, M., Arshad, M., Hussain, S., Bhatti, A.S., 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology, 34: 635−648.CrossrefGoogle Scholar

  • Sengupta, C., Bhosale, A., Malusare, S., 2015. Effect of plant growth promoting rhizobacteria on seed germination and seedling development of Zea mays. International Journal of Research in Advent Technology, Special Issue: National Conference “ACGT 2015”, 13-14 February, 2015: 32−40.Google Scholar

  • Shaukat, K., Affrasayab, S., Hasnain, S., 2006. Growth responses of Triticum aestivum to plant growth promoting rhizobacteria used as a biofertilizer. Research Journal of Microbiology, 1: 330−338.CrossrefGoogle Scholar

  • Yao, L., Wu, Z., Zheng, Y., Kaleem, I., Li, C., 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 46: 49−54.Web of ScienceCrossrefGoogle Scholar

  • Yousefi, S., Kartoolinejad, D., Bahmani, M., Naghdi, R., 2017. Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa L.) under salinity stress. Journal of Sustainable Forestry, 36: 107−120.CrossrefWeb of ScienceGoogle Scholar

  • Yue, H., Mo, W., Li, C., Zheng, Y., Li, H., 2007. The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant and Soil, 297: 139−145.Web of ScienceGoogle Scholar

About the article

Received: 2016-07-20

Accepted: 2016-10-18

Published Online: 2017-08-30

Published in Print: 2017-06-27

Citation Information: Folia Oecologica, Volume 44, Issue 1, Pages 20–27, ISSN (Online) 1338-7014, DOI: https://doi.org/10.1515/foecol-2017-0003.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in