Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Folia Oecologica

2 Issues per year

Open Access
Online
ISSN
1338-7014
See all formats and pricing
More options …

Foliage biomass qualitative indices of selected forest forming tree species in Ukrainian Steppe

Svitlana Sytnyk
  • Department of Garden and Parks, Dnipropetrovsk State Agrarian and Economic University, S. Yephremova st., 25, 49060, Dnipro, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viktoriia Lovynska
  • Corresponding author
  • Department of Garden and Parks, Dnipropetrovsk State Agrarian and Economic University, S. Yephremova st., 25, 49060, Dnipro, Ukraine
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivan Lakyda
  • Department of Forest Management, National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony st., 15, 03041, Kyiv, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-30 | DOI: https://doi.org/10.1515/foecol-2017-0005

Abstract

Our study objective was research on the assimilation component of aboveground biomass of trees and its correlation with mensurational indices of trees (age, diameter and height) in stands of the main forest forming species in the Ukrainian Northern Steppe zone - Pinus sylvestris L. (Scots pine) and Robinia pseudoacacia L. (Black locust). The research was carried out in forest stands subordinated to the State Agency of Forest Resources of Ukraine. We used experimental data collected on sample plots established during years 2014-2016. The main research results prove that the foliage share in the tree greenery biomass structure had a wide range of values. For both investigated species, a positive correlation was found between the dry matter content in the tree foliage and the tree age, height and diameter. The foliage share in tree greenery biomass decreased with increasing mensurational index values. Correlation analysis revealed linear relationships between the mensurational indices and the discussed aboveground live biomass parameters. The closest correlation was observed between the stand age, mean stand diameter, mean stand height and dry matter content in the foliage.

Keywords: allometry; Black locust; forestry; mensurational (biometric) parameters; Scots pine

References

  • Albertson, A., 1988. Needle litterfall in stands of Pinus sylvestris in Sweden in relation to site quality, stand age and latitude. Scandinavian Journal of Forest Research, 3: 333-342.CrossrefGoogle Scholar

  • Bartelink, N.N., 1997. Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annals of Forest Science, 54: 39-50.CrossrefGoogle Scholar

  • Black, K., Tobin, B., Siaz, G., Byrne, K., Osborne, B., 2004. Allometric regressions for an improved estimate of biomass expansion factors for Ireland based on a Sitka spruce chronosequence. Irish Forestry, 61: 50-65.Google Scholar

  • Cannell, M.G., 1984. Woody biomass of forest stands. Forest Ecology and Management, 8: 299-312.CrossrefGoogle Scholar

  • Clark, D., Brown, S., Kicklighter, D., Chambers, J., Thomlinson, J., Ni, J., Holland, E., 2001. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications, 11: 371-384.CrossrefGoogle Scholar

  • Cosmo, L., Gasparini, P., Tabacchi, G., 2016. A national-scale, stand-level model to predict total above-ground tree biomass from growing stock volume. Forest Ecology and Management, 361: 269-276.Web of ScienceGoogle Scholar

  • Dong, J, Kaufmann, R., Myneni, R., Compton, J., Kauppi, P., 2003. Remote sensing estimates of boreal and temperate forest woody biomass carbon pools, sources and sinks. Remote Sensing of Environment, 84: 393-410.CrossrefGoogle Scholar

  • Fownes, J.H., Harrington, R.A., 1991. Allometry of woody biomass and leaf area in five tropical multipurpose trees. Journal of Tropical Forest Science, 4 (4): 317-330.Google Scholar

  • Gill, S.J., Biging, G.S., Murphy, E.C., 2000. Modeling conifer tree crown radius and estimating canopy cover. Forest Ecology and Management, 126: 405-416.CrossrefGoogle Scholar

  • Goudie, J.W., Parish, R., Antos, J.A., 2016. Foliage biomass and specific leaf area equations at the branch, annual shoot and whole-tree levels for lodgepole pine and white spruce in British Columbia. Forest Ecology and Management, 361: 286-297.Web of ScienceGoogle Scholar

  • Hulchak, V.P. (ed.), 2011. Osnovnі polozhennja organіzacії і rozvitku lіsovogo gospodarstva Dnіpropetrovs’koї oblastі [The main provisions of forest organization and management of Dnipropetrovsk region]. Іrpin. 194 p.Google Scholar

  • Hungerford, R.D., 1987. Estimation of foliage area in dense Montana lodgepole pine stands. Canadian Journal of Forest Research, 17: 320-324.CrossrefGoogle Scholar

  • Jelonek, T., Pazdrowski, W., Arasimowicz, M., Tomczak, A., Szaban, J., 2009. The effect of site quality and biological tree class on the crown productivity in Scots pine (Pinus sylvestris L.). Sylwan, 153 (5): 304.Google Scholar

  • Küssner, R., Mosandl, R., 2000. Comparison of direct and indirect estimation of leaf area index in mature Norway spruce stands of eastern Germany. Canadian Journal of Forest Research, 30: 440-447.CrossrefGoogle Scholar

  • Lakyda, P.I., 2002. Fіtomasa lіsіv Ukraїni [Phytomass of Ukrainian forests]. Ternopil: Sbruch. 256 p.Google Scholar

  • Lakyda, P.I., Belous, A.M., Vasylyshyn, R.D., 2010a. Osichniki Shіdnogo Polіssja Ukraїni - nadzemna fіtomasa ta deponovanij vuglec’ [Osychnyky Eastern Woodlands of Ukraine - aboveground biomass and carbon deposited]. Korsun-Shevchenkivsky: FOP Maydanchenko. 255 p.Google Scholar

  • Lakyda, P.I., Blishchik, I.B., 2010b. Fіtomasa vіl’shnjakіv Zahіdnogo Polіssja Ukraїni [Phytomass alders in the west Polissya of Ukraine]. Korsun-Shevchenkivsky: FOP Majdanchenko. 236 p.Google Scholar

  • Lauri, P., Havlík, P., Kindermann, G., Forsell, N., Böttcher, H., Obersteiner, M., 2014. Woody biomass energy potential in 2050. Energy Policy, 66: 19-31.Web of ScienceCrossrefGoogle Scholar

  • Lokhmatov, N., Gladun, G., 2004. Lesnye melioracii v Ukraine: istorija, sostojanie, perspektivy [Forest melioration in Ukraine: history, status and perspectives]. Kharkiv: Nove Slovo. 256 p.Google Scholar

  • Lovinska V., Sytnyk S., 2016. The structure of Scots pine and Black locust forests in the Northern Steppe of Ukraine. Journal of Forest Science, 62: 329-336.CrossrefGoogle Scholar

  • Nakvasina, E.N., 2009. Assimiljacionnyj apparat kak pokazatel’ adaptacii Pinus sylvestris k klimaticheskim uslovijam vyrashhivanija [Assimilation apparatus as an indicator of Pinus sylvestris adaptation to the climatic growing conditions]. Forest Journal, 3: 12-19.Google Scholar

  • Potter, C., Bubier, J., Crill, P., Lafleur, P., 2001. Ecosystem modeling of methane and carbon dioxide fluxes for boreal forest sites. Canadian Journal of Forest Research, 31: 208-223.Google Scholar

  • Schlamadinger, B., Boonpragob, K., Janzen, H., Kurz, W., Lasco, R., Smith, P., Collas, P., Abdalla El Siddig, E.N., Fischlin, A., Matsumoto, M., Nakhutin, A., Noble, I., Pignard, G., Somogyi, Z., Zhang, X.-Q., Easter, M., Galinski, W., Patenaude, G., Paustian, K., Yamagata, Y., Brown, S., Masera, O., Ambia, V., Braatz, B., Kanninen, M., Krug, T., Martino, D., Oballa, P., Tipper, R., Wong, J. L.P., de Jong, B., Shoch, D., 2003. Supplementary methods and good practice guidance arising from the Kyoto Protocol. In Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. Good practice guidance for land use, land-use change and forestry. Hayama, Kanagawa, Japan: Institute for Global Environmental Strategies (IGES) for the IPCC. 120 p.Google Scholar

  • Sytnyk, S., Lovynska, V., Kharytonov, M., Loza, I., 2015. Effect of forest site type on the growing stock of forest-forming species under conditions of the Dnieper Steppe, Ukraine. In Sixth international scientific agricultural symposium “Agrosym 2015”. Jahorina, Bosnia and Herzegovina, October 15-18, 2015. Book of Proceedings. Lukavica: University of East Sarajevo, p. 2118-2125.Google Scholar

  • Tobin, B., Black, K., Osbone, B., Reidy, K., Bolger, T., Nieuwenhuis, M., 2006. Assessment of allometric algorithms for estimating leaf biomass, leaf area index and litter fall in different-aged Sitka spruce forests. Forestry, 79: 453-465.CrossrefGoogle Scholar

  • Thompson, B.C., 1989. The effect of stand structure and stand density on the leaf area - sapwood area relationship of lodgepole pine. Canadian Journal of Forest Research, 19: 392-396.CrossrefGoogle Scholar

  • Turner, D.P., Acker, S.A., Means, J.E., Garmen S.L., 2000. Assessing alternative allometric algorithms for estimating leaf area of Douglas-fir trees and stands. Forest Ecology and Management, 126: 61-76.CrossrefGoogle Scholar

  • Turski, M., Beker, C., Kazmierczak, K., Najgrakowski, T., 2008. Allometric equations for estimating the mass and volume of fresh assimilational apparatus of standing Scots pine (Pinus sylvestris L.) trees. Forest Ecology and Management, 255: 2678 -2687.Web of ScienceGoogle Scholar

  • Usoltsev, V.A., 2013. Forest biomass and primary production database for Eurasia. Yekaterinburg: Ural State Forest Engineering University. 570 p.Google Scholar

About the article

Received: 2016-12-21

Accepted: 2017-03-14

Published Online: 2017-08-30

Published in Print: 2017-06-27


Citation Information: Folia Oecologica, Volume 44, Issue 1, Pages 38–45, ISSN (Online) 1338-7014, DOI: https://doi.org/10.1515/foecol-2017-0005.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in