Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Folia Oecologica

2 Issues per year

Open Access
Online
ISSN
1338-7014
See all formats and pricing
More options …

Development of soil water regime under spruce stands

Ladislav Tužinský
  • Corresponding author
  • Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 960 53 Zvolen, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduard Bublinec
  • Department of Biology and Ecology, Faculty of Education, Catholic University in Ružomberok, Hrabovská 1, 034 01 Ružomberok, Slovak Republic
  • Institute of Forest Ecology of the Slovak Academy of Sciences, Štúrova 2, Zvolen, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marek Tužinský
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-30 | DOI: https://doi.org/10.1515/foecol-2017-0006

Abstract

The aim of this paper is to analyse the water regime of soils under spruce ecosystems in relation to long-lasting humid and drought periods in the growing seasons 1991-2013. The dominant interval humidity in observing growing seasons is semiuvidic interval with soil moisture between hydro-limits maximal capillary capacity (MCC) and point of diminished availability (PDA). Gravitationally seepage concentrated from accumulated winter season, water from melting snow and existing atmospheric precipitation occurs in the soil only at the beginning of the growing season. The supplies of soil water are significantly decreasing in the warm climate and precipitant deficient days. The greatest danger from drought threatens Norway spruce during the summer months and it depends on the duration of dry days, water supply at the beginning of the dry days, air temperature and the intensity of evapotranspiration. In the surface layers of the soil, with the maximum occurrence of active roots, the water in semiarid interval area between hydro-limits PDA and wilting point (WP) decreases during the summer months. In the culminating phase occurs the drying to moisture state with capillary stationary and the insufficient supply of available water for the plants. Physiological weakening of Norway spruce caused by set of outlay components of the water balance is partially reduced by delivering of water by capillary action from deeper horizons. In extremely dry periods, soil moisture is decreasing also throughout the soil profile (0-100 cm) into the bottom third of the variation margin hydro-limits MCC-PDA in the category of capillary less moving and for plants of low supply of usable water (60-90 mm). The issue of deteriorated health state of spruce ecosystems is considered to be actual. Changes and developments of hydropedological conditions which interfere the mountain forests represent the increasing danger of the drought for the spruce.

Keywords: available water; forest ecosystem; hydrolimits; soil moisture; water balance

References

  • Antal, J., Špánik, F., 1999. Hydrológia poľnohospodárskej krajiny [Hydrology of agricultural land]. Nitra: Slovenská poľnohospodárska univerzita. 250 p.Google Scholar

  • Bublinec, E., 1994. Koncentrácia, akumulácia a kolobeh prvkov v bukovom a smrekovom ekosystéme [Concentration, accumulation and cycle of elements in beech and spruce ecosystem]. Acta Dendrologica. Bratislava: Veda. 132 p.Google Scholar

  • Drbal, J., 1965. Praktikum melioračního půdoznalství [Practicals of amelioration soil science]. Praha: SPN. 265 p.Google Scholar

  • Hraško, J., Červenka, L., Facek, Z., Komár, J., Němeček, J., Pospíšil, F., Sirový, V., 1962. Rozbory pôd [Analysis of soils]. Bratislava: Slovenské vydavateľstvo pôdohospodárskej literatúry. 342 p.Google Scholar

  • Klika, J., Novák, V., Gregor, J., 1954. Praktikum fytocenologie, ekologie, klimatologie a půdoznalství [Practicals of phytocenology, ecology, climatology and soil science]. Praha: ČSAV. 773 p.Google Scholar

  • Kmeť, J., Ditmarová, Ľ., Priwitzer, T., Kurjak, D., 2009. Physiological aspects of yellowing of spruce advanced regeneration in area of the Kysucké Beskydy Mts. Beskydy -The Beskids Bulletin, 2: 29-37.Google Scholar

  • Konôpka, B., 2009. Differences in pine root traits between Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.). A case study in the Kysucké Beskydy Mts. Journal of Forest Science, 55: 556-566.Google Scholar

  • Kozlowski, T.T., Kramer, P.J., Pallardy, S.G., 1991. The physiological ecology of woody plants. San Diego: Academic Press. 657 p.Google Scholar

  • Kutílek, M., 1966. Vodohospodářská pedologie [Water management related soil science]. Praha: SNTL. 275 p.Google Scholar

  • Kutílek, M., 1971. Ekologická klasifikace půdní vlhkosti [Ecological classification of soil moisture content]. Vodní Hospodářství, 9: 250-256.Google Scholar

  • Lorz, C., Furst, Ch., Galic, Z., Matjasic, D., Podrazsky, V., Potocic, N., Simoncic, P., Strauch, M., Vacik, H., Makeshin, F., 2010. GIS-based probability assessment of natural hazards in forested landscapes of Central and South-Eastern Europe. Environmental Management, 46: 920-930.Web of ScienceCrossrefGoogle Scholar

  • Persson, H., Fircks, Y.V., Majdi, H., Nilsson, L.O., 1995. Root distribution in a Norway spruce (Picea abies [L.] Karst.) stand subjected to drought and ammonium-sulphate application. Plant and Soil, 168-169: 161-165.Google Scholar

  • Priwitzer, T., Střelcová, K., Kmeť, J., 2003. Ekofyziologické procesy lesných drevín [Ecophysiological processes of forest tree species]. In Minďáš, J., Škvarenina, J. (eds). Lesy Slovenska a globálne klimatické zmeny. Zvolen: EFRA, Lesnícky výskumný ústav, p. 44-49.Google Scholar

  • Střelcová, K., Kučera, J., Fleischer, P., Giorgi, S., Gömöryová, E., Škvarenina, J., Ditmarová, Ľ., 2009. Canopy transpiration of mountain mixed forest as a function of environmental conditions in boundary layer. Biologia, 64: 507-511.Web of ScienceGoogle Scholar

  • Šach, F., Švihla, V., Černohous, V., Kantor, P., 2014. Management of mountain forests in the hydrology of a landscape, the Czech Republic - Review. Journal of Forest Science, 60: 42-50.Google Scholar

  • Škvarenina, J., Tomlain, J., Križová, E., 2002. Klimatická vodní bilance vegetačních stupňů na Slovensku [Climatic water balance of vegetation zones in Slovakia]. Meteorologické Zprávy, 55 (4): 103-109.Google Scholar

  • Šútor, J., 1994. Voda v zóne aerácie, III. Vodný zdroj prírodného zdroja [Water in the aeration zone, III. Water resource in natural environment]. In Zborník Voda pre život. Bratislava: MPH SR, VÚVH, p. 123-128.Google Scholar

  • Šútor, J., Gomboš, M., Mati, R., 2005. Kvantifikácia pôdneho sucha [Quantification of soil drought]. In Transport vody, chemikálií a energie v systéme pôda - rastlina - atmosféra. voda. 13. posterový deň s medzinárodnou účasťou a Deň otvorených dverí na ÚH SAV. 12. november 2009. Zborník recenzovaných príspevkov. Bratislava: Ústav hydrológie SAV, Geofyzikálny ústav SAV, p. 515-523.Google Scholar

  • Tužinský, L., 2004. Vodný režim lesných pôd [Water regime of forest soils]. Zvolen: Technická univerzita. 101 p.Google Scholar

  • Verbeek, H., Steppe, K., Nadezdhina, N., Op De Beek, M., Deckmyn, G., Meirsonne, L., Lemeur, R., Čermák. J., Ceulemans, R., Janseens, I.A., 2007. Model analysis of the effects of atmospheric drivers in storage water use in Scots pine. Biogeosciences, 4: 657-671.CrossrefGoogle Scholar

About the article

Received: 2016-12-12

Accepted: 2017-03-16

Published Online: 2017-08-30

Published in Print: 2017-06-27


Citation Information: Folia Oecologica, ISSN (Online) 1338-7014, DOI: https://doi.org/10.1515/foecol-2017-0006.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in