Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Folia Oeconomica Stetinensia

The Journal of University of Szczecin

2 Issues per year

Open Access
See all formats and pricing
More options …

Bifurcation, Chaos and Attractor in the Logistic Competition

Małgorzata Guzowska
  • Department of Econometrics and Statistics, Faculty of Economics and Management, University of Szczecin, Mickiewicza 64, 71-101 Szczecin
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-06-28 | DOI: https://doi.org/10.2478/v10031-011-0039-5

Bifurcation, Chaos and Attractor in the Logistic Competition

This paper deals with a two-dimensional discrete time competition model. The corresponding twodimensional iterative map is represented in terms of its bifurcation diagram in the parameter plane. A number of bifurcation sequences for attractors and their basins are studied.

Keywords: Discrete Logistic Competition Model; local stability; global stability; bifurcation; chaos; chaotic attractor

  • Bischi, G.I., Gardini, L. (2000). Global Properties of Symmetric Competition Models with Riddling and Blowout Phenomena. Discrete Dynamics in Nature and Society. Vol. 5, 149-160.Google Scholar

  • Day, R.H. (1994). Complex Economic Dynamics. The MIT Press, Cambridge, Massachusetts.Google Scholar

  • Elaydi, S. (1996). An Introduction to Difference Equations. Springer, New York.Google Scholar

  • Elaydi, S. (2008). Discrete Chaos: With Applications in Science and Engineering. Chapman and Hall/CRC.Google Scholar

  • Guzowska, M., Luis, R., Elaydi, S. (2011). Bifurcation and invariant manifolds of the logistic competition model. Journal of Difference Equations and Applications. Vol. 17, Issue 12.Web of ScienceGoogle Scholar

  • Kuznetsov, Y. (1995). Elements of applied bifurcation theory. Vol. 112 of Applied mathematical sciences, SV, New York.Google Scholar

  • López-Ruiz, R., Fournier-Prunaret, D. (2004). Indirect Allee effect, bistability and chaotic oscillations in a predator-prey discrete model of logistic type. Chaos, Solitons and Fractals, 24, 85-101.Google Scholar

  • Malthus, T.R. (1798). An Essay on the Principle of Population. Printed for J. Johnson, in St. Paul's Church-Yard. London.Google Scholar

  • May, R.M. (1976). Simple mathematical models with very complicated dynamics. Nature 261, 459-467.Google Scholar

  • Mira, C. (1987). Chaotic Dynamics. World Scientific, Singapour.Google Scholar

  • Mira, C., Gardini, L., Barugola, A., Cathala, J.-C. (1996). Chaotic Dynamics in Two- Dimensional Noninvertible Maps. World Scientific Series on Nonlinear Science. Series A, Vol. 20.Google Scholar

  • Puu, T. (1989). Nonlinear economic dynamics. In: Lecture notes in economics and mathematical systems, Vol. 336. Springer-Verlag.Google Scholar

  • Puu, T. (1991). Chaos in business cycles. Chaos, Solitons, & Fractals. 1,457-73.Google Scholar

  • Puu, T. (2000). Attractors, bifurcations, and chaos - nonlinear phenomena in economics. Springer-Verlag.Google Scholar

  • Verhulst, P.F. (1845). Recherches mathématiques sur la loi d'accroissement de la population. Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles 18,1-42.Google Scholar

  • Volterra, V. (1928). Variations and fluctuations of the number of individuals in animal species living together. J. Cons. Int. Explor. Mer. 3 3-51.Google Scholar

About the article

Published Online: 2012-06-28

Published in Print: 2012-01-01

Citation Information: Folia Oeconomica Stetinensia, ISSN (Online) 1898-0198, ISSN (Print) 1730-4237, DOI: https://doi.org/10.2478/v10031-011-0039-5.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in