Jump to ContentJump to Main Navigation
Show Summary Details

Folia Oeconomica Stetinensia

The Journal of University of Szczecin

2 Issues per year

Open Access
Online
ISSN
1898-0198
See all formats and pricing

The Use of the Geographically Weighted Regression for the Real Estate Market Analysis

Radosław Cellmer Ph.D.
  • Corresponding author
  • University of Warmia and Mazury in Olsztyn Faculty of Geodesy and Land Management Department of Real Estate Management and Regional Development Prawochenskiego 15, 10-720 Olsztyn, Poland
  • Email:
Published Online: 2013-03-15 | DOI: https://doi.org/10.2478/v10031-012-0009-6

Abstract

The article presents a method for developing geographically weighted regression models for analyzing real estate market transaction prices and evaluating the effect of selected property attributes on the prices and value of real estate. The property attributes were evaluated on a grading scale to determine the relative (percentage) indicators characterizing the relationships on the real estate market. The market data were analyzed to evaluate the influence of infrastructure availability on the prices of land in Olsztyn. The results were used to assess the effect of every utility service on the property transaction prices.

Keywords : market analysis; geographically weighted regression; spatial models

  • Adamczewski, Z. (2006). Elementy modelowania matematycznego w wycenie nieruchomości. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: B. Petrov and F. Csaki (Eds.), 2nd Symposium on Information Theory, Budapest: Akademiai Kiado (pp. 267-281).

  • Anselin, L. (1988). Spatial econometrics: methods and models. Dordrecht: Kluwer Academic Publishers.

  • Barańska, A. (2008). Kryteria stosowania modeli stochastycznych w predykcji rynkowej wartości nieruchomości. Zastosowania Metod Statystycznych w Badaniach Naukowych. StatSoft, www.statsoft.pl/czytelnia.

  • Bitner, A. (2007). Konstrukcja modelu regresji wielorakiej przy wycenie nieruchomości, ActaScientiarum Polonorum, Administratio Locorum, 7, 1, 41-53.

  • Bonnafous, A. & Kryvobokov, M. (2011). Insight into apartment attributes and location with factors and principal components. International Journal of Housing Markets and Analysis, 4, 2, 155-171. DOI: 10.1108/17538271111137930. [Crossref]

  • Bruce, R.W. & Sundell, D.J. (1977). Multiple regression analysis: history and application in the appraisal profession. Real Estate Appraiser, Jan/Feb, 37-44.

  • Brunsdon, C., Fotheringam, S. & Charlton, M. (1999). Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science, 39, 3, 497-524.

  • Brunsdon, C., Fotheringham, S. & Charlton, M. (2000). Geographically Weighted Regressionas a Statistical Model, Spatial Analysis Research Group, Department of Geography, University of Newcastle-upon-Tyne, UK.

  • Caseti, E. (1972). Generating models by the expansion method: applications to geographic research, Geographical Analysis, 4, 81-91.

  • Charlton, M. & Fotheringham, S. (2009). Geographically weighted regression. National Centre for Geocomputation, Maynooth, Ireland.

  • Czaja, J. (2001). Metody szacowania wartości rynkowej i katastralnej nieruchomości. Kraków: Wydawnictwo Akademii Górniczo-Hutniczej w Krakowie.

  • Fotheringham, S., Brunsdon, C., Charlton, M. (2002). Geographically Weighted Regression - the analysis of spatially varying relationships. New York: John Wiley & Sons, Ltd.

  • Haining, R. (2003). Spatial analysis of regional geostatistics data. Cambridge University Press.

  • Hozer, J. (2001). Regresja wieloraka a wycena nieruchomości. Rzeczoznawca Majątkowy, 2, 13-14.

  • Hurvich, C.M., Simonoff, J.S. & Tsai, C.L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of RoyalStatistical Society, B, 60, 271-293, DOI: 10.1111/1467-9868.00125. [Crossref]

  • Kulczycki, M. & Ligas, M. (2007). Regresja ważona geograficznie jako narzędzie analizy rynku nieruchomości, Geomatics and Environmental Engineering, 1, 2, 59-68.

  • Lis C. (2005). Ekonometryczne modele cen transakcyjnych lokali mieszkalnych, Zeszyty NaukoweUniwersytetu Szczecińskiego 415. Prace Katedry Ekonometrii i Statystyki 16, 161-174.

  • Mark, J. & Goldberg, M.A. (1988). Multiple regression analysis and mass assessment. A review of the issues. Appraisal Journal, 56, 89-109.

  • McCord, M., Davis, P.T., Haran, M., McGreal, S. & Mcllhatton, D. (2012). Spatial variation as a determinant of house price: Incorporating a geographically weighted regression approach within the Belfast housing market, Journal of Financial Management of Propertyand Construction 17, 1, 49-72. DOI: 10.1108/13664381211211046. [Crossref]

  • Sawiłow, E. (2010). Problematyka określania wartości nieruchomości metodą analizy statystycznej rynku. Studia i Materiały Towarzystwa Naukowego Nieruchomości, 18, 1, 21-32.

  • Simpson, E.H. (1951). The interpretation of interaction in contingency tables. Journal of theRoyal Statistical Society B13, 238-241.

  • Swamy, P. (1971). Statistical inference in random coefficient models. Berlin: Springer.

  • Tobler, W.R. (1970). A computer movie simulating urban growth in the Detroid region, EconomicGeography, 46, 234-240.

  • Wang, K. & Wolverton, M.L. (2002). Real Estate Valuation Theory. Berlin: Springer.

About the article

Published Online: 2013-03-15

Published in Print: 2012-01-01


Citation Information: Folia Oeconomica Stetinensia, ISSN (Online) 1898-0198, ISSN (Print) 1730-4237, DOI: https://doi.org/10.2478/v10031-012-0009-6. Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in