Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Folia Oeconomica Stetinensia

The Journal of University of Szczecin

2 Issues per year

Open Access
See all formats and pricing
More options …

Application of Chosen Methods of Robust Estimation: Baarda’s and Huber’s in Search for Outliers in the Real Estate Market Modeling

Beata Śpiewak
  • M.Sc. AGH University of Science and Technology Faculty of Mining Surveying and Environmental Engineering Departament of Geomatics A. Mickiewicza 30, 30-059 Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-04 | DOI: https://doi.org/10.2478/foli-2018-0003


In the article, an attempt was made to compile a dataset which was devoid of outliers, on the example of Cracovian apartment market. Robust estimation was the tool which was used, but only its two methods were considered: Baarda’s and Huber’s. Huber’s method belongs to the so-called active methods which means that it allows to eliminate gross errors during the estimation of the parameters of multiple linear regression where a unit price is called a dependent variable or forecasted one. Baarda’s method is a passive method which is based on statistical tests and allows, after determining the parameters of a multiple linear regression model, to indicate the observations which may be burdened with gross errors. Thus both mentioned algorithms differ from each other substantially. In this publication, Baarda’s and Huber’s methods were compared in the context of their effectiveness for the analyzed dataset, and as tools of preparing the data for further analysis. The results showed that Baarda’s method is more appropriate for the analyzed dataset than Huber’s algorithm, but it does not mean that the active method is worse.

Keywords: market analysis; Baarda’s method; Huber’s method; robust estimation; multiple linear regression


  • Adamczyk, T. (2017). Application of the Huber and Hampel M-estimation in Real Estate Value Modeling. Geomatics and Environmental Engineering, 1 (11), 15-23. DOI: 10.7494/geom.2017.11.1.15.CrossrefGoogle Scholar

  • Barańska, A. (2007). Dwuetapowy model wyceny nieruchomości. Journal of the Polish Real Estate Scientific Society, 15 (3-4), 187-195.Google Scholar

  • Barańska, A. (2010). Statystyczne metody analizy i weryfikacji proponowanych algorytmów wyceny nieruchomości. Rozprawy i Monografie. Kraków: Wydawnictwa AGH.Google Scholar

  • Barańska, A. (2012). Statystyczna weryfikacja modeli wyceny nieruchomości. Journal of the Polish Real Estate Scientific Society, 20 (1), 29-39.Google Scholar

  • Baarda, W. (1968). A testing procedure for use in geodetic networks. Netherlands Geodetic Commission, 2 (5).Google Scholar

  • Bitner, A. (2007). Konstrukcja modelu regresji wielorakiej przy wycenie nieruchomości. Acta Scientiarum Polonorum, Administratio Locorum, 6 (4), 59-66.Google Scholar

  • Doszyń, M., Gnat, S. (2017). Econometric Identification of the Impact of Real Estate Characteristics Based on Predictive and Studentized Residuals. Journal of the Polish Real Estate Scientific Society, 25 (1), 84-92. DOI: 10.1515/remav-2017-0005.CrossrefGoogle Scholar

  • Huber, P.J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 35 (1), 73-101.Google Scholar

  • Huber, P.J. (1981). Robust statistics. New York: John Wiley & Sons.Google Scholar

  • Kamiński, W. (2003). Z odsieczą połowcom. Surveyor, 101, 28-30.Google Scholar

  • Isakson, H.R. (1998). The Review of Real Estate Appraisals Using Multiple Regression Analysis. Journal of Real Estate Research, 15 (2), 177-190.Google Scholar

  • Ligas, M. (2010). Metody statystyczne w wycenie nieruchomości. Journal of the Polish Real Estate Scientific Society, 18 (1), 49-64.Google Scholar

  • Muszyński, Z., Rybak, J. (2008). Zastosowanie metod estymacji odpornej w obliczeniach nośności granicznej pali. Mining and Geoengineering, 32 (2), 257-265.Google Scholar

  • Prószyński, W., Kwaśniak, M. (2002). Niezawodność sieci geodezyjnych. Warsaw Polytechnic Publishing House.Google Scholar

  • Ramsey, J.B. (1969). Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis. Journal of the Royal Statistical Society. Series B (Methodological), 31 (2), 350-371.Google Scholar

  • Smith, Jr., Everett, V. (2002). Understanding Rasch measurement: Detecting and evaluating the impact of multidimenstionality using item fit statistics and principal component analysis of residuals. Journal of Applied Measurement, 3 (2), 205-231.Google Scholar

  • Śpiewak, B. (2018). Application of Passive Methods of Robust Estimation: Baarda’s and Pope’s in Real Estate Market Analysis. Journal of the Polish Real Estate Scientific Society, 1 (1), 5-15.Google Scholar

  • Walesiak, M. (1996). Metody analizy danych marketingowych. Warszawa: PWN.Google Scholar

About the article

Received: 2017-10-30

Accepted: 2018-03-25

Published Online: 2018-07-04

Published in Print: 2018-06-01

Citation Information: Folia Oeconomica Stetinensia, Volume 18, Issue 1, Pages 27–38, ISSN (Online) 1898-0198, DOI: https://doi.org/10.2478/foli-2018-0003.

Export Citation

© 2018 Beata Śpiewak, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in