Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Folia Oeconomica Stetinensia

The Journal of University of Szczecin

2 Issues per year

Open Access
Online
ISSN
1898-0198
See all formats and pricing
More options …

Approximate Method of Estimation of Exponential Trend Parameters for Forecasting Process Purposes

Kamila Bednarz-Okrzyńska
  • Ph.D. University of Szczecin Faculty of Management and Economics of Services Department of Quantitative Methods Cukrowa 8, 71-004 Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-04 | DOI: https://doi.org/10.2478/foli-2018-0013

Abstract

The paper discusses the issue of estimation of exponential trend parameters in terms of its application in the forecast process. Due to the character of a random element, three models were considered: additive, multiplicative, and mixed. For estimating trend parameters, a log transformation method, least squares method, and approximate methods were applied. As a result of computer simulations, high sensitivity of the log transformation method with regard to the assumed random element model was noticed. This method yields the smallest value of ex post error for the multiplicative model but is burdened with a large error for the additive model, where the estimated parameter B takes large values (B > 0.24). In the paper, a new approximate method of estimation of exponential trend parameters is proposed. The method is compared with approximate formulas presented in the paper by Purczyński (2008).

Keywords: exponential trend; parameter estimation; least squares; approximate methods

References

  • Cieślak, M. (2001). Prognozowanie gospodarcze. Metody i zastosowanie. Warszawa: Wydawnictwo Naukowe PWN.Google Scholar

  • Jurkiewicz, T., Plenikowska-Ślusarz, T. (2001). Algorytmy optymalizacyjne w estymacji nieliniowych funkcji regresji. Wiadomości Statystyczne, 10, 10-15.Google Scholar

  • Kmenta, J. (1990). Elements of Econometrics (second edition). Mac Milan Publishing Co.Google Scholar

  • Purczyński, J. (2003). Wykorzystanie symulacji komputerowych w estymacji wybranych modeli ekonometrycznych i statystycznych. Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.Google Scholar

  • Purczyński, J. (2008). Wybrane aspekty prognozowania z wykorzystaniem trendu wykładniczego. Przegląd Statystyczny, LV (1), 27‒44.Google Scholar

  • Zaród, J. (2017). Czynniki kształtujące ceny wybranych produktów rolno-spożywczych. Zeszyty Naukowe SGGW w Warszawie, 17 (XXXII), Zeszyt 3, 298-307.Google Scholar

  • Zeliaś, A. (1997). Teoria prognozy. Warszawa: PWE.Google Scholar

  • Zeliaś, A., Pawełek, B., Wanat, S. (2003). Prognozowanie ekonomiczne. Teoria, przykłady, zadania. Warszawa: Wydawnictwo Naukowe PWN.Google Scholar

About the article

Received: 2017-10-30

Accepted: 2018-03-27

Published Online: 2018-07-04

Published in Print: 2018-06-01


Citation Information: Folia Oeconomica Stetinensia, Volume 18, Issue 1, Pages 169–181, ISSN (Online) 1898-0198, DOI: https://doi.org/10.2478/foli-2018-0013.

Export Citation

© 2018 Kamila Bednarz-Okrzyńska, published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in