Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Central European Forestry Journal

The Journal of National Forest Centre – Forest Research Institute Zvolen

4 Issues per year

CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.230
Source Normalized Impact per Paper (SNIP) 2016: 0.454

Open Access
See all formats and pricing
More options …
Volume 62, Issue 1


Projected effects of climate change on the carbon stocks of European beech (Fagus sylvatica L.) forests in Zala County, Hungary

Zoltán Somogyi
  • Corresponding author
  • National Agricultural Research and Innovation Centre, Forest Research Institute, Frankel L. u. 1, H– 1027 Budapest, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-03 | DOI: https://doi.org/10.1515/forj-2016-0001


Recent studies suggest that climate change will lead to the local extinction of many tree species from large areas during this century, affecting the functioning and ecosystem services of many forests. This study reports on projected carbon losses due to the assumed local climate change-driven extinction of European beech (Fagus sylvatica L.) from Zala County, South-Western Hungary, where the species grows at the xeric limit of its distribution. The losses were calculated as a difference between carbon stocks in climate change scenarios assuming an exponentially increasing forest decline over time, and those in a baseline scenario assuming no climate change. In the climate change scenarios, three different sets of forest management adaptation measures were studied: (1) only harvesting damaged stands, (2) additionally salvaging dead trees that died due to climate change, and (3) replacing, at an increasing rate over time, beech with sessile oak (Quercus petraea Matt. Lieb.) after final harvest. Projections were made using the open access carbon accounting model CASMOFOR based on modeling or assuming effects of climate change on mortality, tree growth, root-to-shoot ratio and decomposition rates. Results demonstrate that, if beech disappears from the region as projected by the end of the century, over 80% of above-ground biomass carbon, and over 60% of the carbon stocks of all pools (excluding soils) of the forests will be lost by 2100. Such emission rates on large areas may have a discernible positive feedback on climate change, and can only partially be offset by the forest management adaptation measures.

Keywords: climate change; mortality; silviculture; forest carbon balance; European beech


  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowel, N., Vennetier, M. et al., 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259:660-684.Google Scholar

  • Bartholy, J., Pongrácz, R., Gelybó, G., 2007: Regional climate change expected in Hungary for 2071-2100. Applied Ecology and Environmental Research, 5:1-17.Google Scholar

  • Bartholy, J., Pongrácz, R., Pieczka, I., 2014: How the climate will change in this century? Hungarian Geographical Bulletin, 63:55-67.Google Scholar

  • Battles, J. J., Robards, T., Das, A., Waring, K., Gilles, J. K., Biging, G. et al., 2008: Climate change impacts on forest growth and tree mortality: a data-driven modelling study in the mixed-conifer forest of the Sierra Nevada, California. Climatic Change, 87(Suppl. 1): S193-S213.Google Scholar

  • Béky, A., 1981: Mag eredetű kocsánytalan tölgyesek fatermése. [The yield of stands of sessile oak of seed origin. In Hungarian.] Erdészeti Kutatások, 74:309−320.Google Scholar

  • Birdsey, R. A., Plantiga, A. J., Heath, L. S., 1993: Past and prospective carbon storage in United States forests. Forest Ecology and Management, 58:33-40.Google Scholar

  • Borhidi, A., 1961: Klimadiagramme und klimazonale Karte Ungarns. Annales Universitatis Scientiarum Budapestinensis, Sectio Biologica, 4:21-50.Google Scholar

  • Bošel’a, M., Sedmák, R., Sedmáková, D., Marušák, R., Kulla, L., 2014: Temporal shifts of climate-growth relationships of Norway spruce as an indicator of health decline in the Beskids, Slovakia. Forest Ecology and Management, 325:108-117.Google Scholar

  • Chen, J., Colombo, S. J., Ter-Mikaelian, M. T., Heath, L. S., 2010: Carbon budget of Ontario’s managed forests and harvested wood products, 2001-2100. Forest Ecology and Management, 259:1385-1398.Google Scholar

  • Crookston, N. L., Rehfeldt, G. E., Dixon, G. E., Weiskittel, A. R., 2010: Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. Forest Ecology and Management, 260:1198-1211.Google Scholar

  • Czúcz, B., Gálhidy, L., Mátyás, C., 2011: Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science, 68:99-108.Google Scholar

  • Davis, S. C., Hessl, A. E., Scott, C. J., Adams, M. B., Thomas, R. B., 2009: Forest carbon sequestration changes in response to timber harvest. Forest Ecology and Management, 258:2101-2109.Google Scholar

  • Eggers, J., Lindner, M., Zudin, S., Zaehle, S., 2008: Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Global Change Biology, 14:2288-2303.CrossrefGoogle Scholar

  • Elkin, Ch., Gutiérrez, A. G., Leuzinger, S., Manusch, C., Temperli, Ch., Rasche, S., Bugmann, H., 2013: A 2 °C warmer world is not safe for ecosystem services in the European Alps. Global Change Biology, 19:1827-1840.Google Scholar

  • Fang, J., Lechovitz, M. J., 2006: Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography., 33:1804-1819.Google Scholar

  • Gálos, B., Vigh, P., 2014: Éghajlati tendenciák a Kárpát-medencében és Zala megyében. In: Mátyás, C. (ed.): Az előrevetített klímaváltozás hatáselemzése és az alkalmazkodás lehetőségei az erdészeti- és agrárszektorban (in Hungarian). Available at: http://www.agrarklima.nyme.hu/fileadmin/Image_Archive/gi/agroklima/zaro/01.pdf.Google Scholar

  • Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G-J., Zimmermann, N. E., 2012: Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change.Google Scholar

  • Hirka, A., 2013: A 2013. évi biotikus és abiotikus erdőgazdasági károk, valamint a 2014-ben várható károsítások. Hungarian Forest Research Institute. Available at: https://www.nebih.gov.hu/data/cms/168/186/EV_prognozis_2013_2014.pdf.Google Scholar

  • Hlásny, T., Barcza, Z., Fabrika, M., Balázs, B., Churkina, G., Pajtík, J. et al., 2011: Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research, 47: 219-236.Google Scholar

  • Hlásny, T., Barcza, Z., Barka, I., Merganičová, K., Sedmák, R., Kern, A. et al., 2014a: Future carbon cycle in mountain spruce forests of Central Europe: Modelling framework and ecological inferences. Forest Ecology and Management, 328: 55-68.Google Scholar

  • Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Merganičová, K., Trombik, J. et al., 2014b: Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesnícky časopis - Forestry Journal, 60:5-18.Google Scholar

  • Hurteau, M. D., Robards, T. A., Stevens, D., Saah, D., North, M., Koch, G. W., 2014: Modelling climate and fuel reduction impacts on mixed-conifer forest carbon stocks in the Sierra Nevada, California. Forest Ecology and Management, 315:30-42.Google Scholar

  • IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. [Eggleston, H. S., Miwa, K., Ngara, T., Tanabe, K. (eds.)], IGES, Hayama, Japan.Google Scholar

  • IPCC 2009: Revisiting the Use of Managed Land as a Proxy for Estimating National Anthropogenic Emissions and Removals, Meeting Report, 5-7 May, 2009, INPE, São José dos Campos, Brazil, Pub. IGES, Japan 2009.Google Scholar

  • IPCC 2013:. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J. et al. (eds.)]. Cambridge, Cambridge University Press, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar

  • IPCC 2014a: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Technical Summary. Retrieved from http://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-TS_FGDall.pdf 08 June 2014.Google Scholar

  • IPCC 2014b: 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol. [Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T. G. (eds)]. Published: IPCC, Switzerland.Google Scholar

  • Jacob, D., van den Hurk, B. J. J. M, Andræ, U., Elgered, G., Fortelius, C., Graham, L. P. et al., 2001: A comprehensive model intercomparison study investigating the water budget during the BALTEX PIDCAP period. Meteorology and Atmospheric Physics, 77:19-43.Google Scholar

  • Jacob, D. L., Barring, O. B. Christensen, J. H. Christensen, M. de Castro, M. Deque, F. et al., 2007: An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change, 81:31-52.CrossrefGoogle Scholar

  • Jansson, P. - E., Svensson, M., Kleja, D. B., Gustafsson, D., 2008: Simulated climate change impacts on fluxes of carbon in Norway spruce ecosystems along a climatic transect in Sweden. Biogeochemistry, 89:81-94.CrossrefGoogle Scholar

  • Járó, Z., 1966: A termőhely. In: Babos, I., Szodfridt, I., Tóth, B., Proszt, H. S., Járó, Z., Király, L.: Erdészeti termőhelyfeltárás és térképezés. Budapest. p. 19-116. (In Hungarian).Google Scholar

  • Jung, T., 2009: Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. Forest Pathology, 39:73-94.Google Scholar

  • Koloszár, J., 2010: Erdőismerettan. Egyetemi jegyzet (In Hungarian). West-Hungarian University, 354 p. Available at: http://emevi.emk.nyme.hu/fileadmin/Image_Archive/emk/erfaved/_Seg/Allando/E-ismerettan/Koloszar_Jozsef_Erdoismerettan_jegyzet.pdf.Google Scholar

  • Kolström, M., Lindner, M., Vilén, T., Maroschek, M., Seidl, R., Lexer, M. J. et al., 2011: Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests, 2: 961-982.Google Scholar

  • Konôpka, B., Pajtík, J., Noguchi, K., Lukac, M., 2013: Replacing Norway spruce with European beech: A comparison of biomass and net primary production patterns in young stands. Forest Ecology and Management, 302:185-192.Google Scholar

  • Krankina, O. N., Harmon, M. E., Schnekenburger, F., Sierra, C. A., 2012: Carbon balance on federal forest lands of Western Oregon and Washington: The impact of the Northwest Forest Plan. Forest Ecology and Management, 286:171-182.Google Scholar

  • Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L. et al., 2008: Mountain pine beetle and forest carbon feedback to climate change. Nature, 452:987-90.Google Scholar

  • Lakatos, F., Molnár, M., 2009: Mass mortality of beech in South- West Hungary. Acta Silvatica & Lignaria Hungarica, 5:75-82.Google Scholar

  • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J. et al., 2010: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259:698-709.Google Scholar

  • Lindner, M., Fitzgerald, J., Zimmermann, N., Reyer, C., Delzon, S., Maaten, E. et al., 2014: Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146:69-83.Google Scholar

  • Matala, J., Ojansuu, R., Peltola, H., Sievänen, R., Kellomäki, S., 2005: Introducing effects of temperature and CO2 elevation on tree growth into a statistical growth and yield model. Ecol. Model., 181:173-190.Google Scholar

  • Mátyás, C., Czimber, K., 2004: Climatic sensibility of zonal closed forest limit in Hungary. In: Mátyás, C., Víg, P. (ed.): Forest and Climate, IV. Sopron, p. 35-44.Google Scholar

  • Mátyás, C., Berki, I., Czúcz, B., Gálos, B., Móricz, N., Rasztovits, E., 2010: Future of Beech in Southeast Europe from the Perspective of Evolutionary Ecology. Acta Silvatica and Ligniaria Hungarica, 6:91-110.Google Scholar

  • Mendlik, G., 1983: Bükk fatermési tábla. [Yield tables for beech. In Hungarian.]. Erdészeti Kutatások, 75:189-198.Google Scholar

  • Millennium Ecosystem Assessment, 2005: Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington DC, 86 p.Google Scholar

  • Morales, P., Hickler, T., Rowell, D. P., Smith, B., Sykes, M. T., 2007: Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Global Change Biology, 13:108-122.CrossrefGoogle Scholar

  • Móricz, N., Rasztovics, E., Gálos, B., Berki, I., Eredics, A., Loibl, W., 2013: Modelling the Potential Distribution of Three Climate Zonal Tree Species for Present and Future Climate in Hungary. Acta Silvatica et Lignaria Hungarica, 9.1:85-96.Google Scholar

  • Nabuurs, G. J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M. et al., 2007: Forestry. In: Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., Meyer, L. A. (eds.): Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar

  • Nabuurs, G. J., Lindner, M., Verkerk, P. J, Gunia, K., Deda, P., Michalak, R., Grassi, G., 2013: First signs of carbon sink saturation in European forest biomass. Nature Climate Change, 3:792-796.Google Scholar

  • Ndalowa, D., 2014: Evaluation of carbon accounting models for plantation forestry in South Africa. Available at: http://hdl.handle.net/10019.1/86247.Google Scholar

  • NIR Hungary, 2012: National Inventory Report of Hungary. Available at: http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/hun-2012-nir-25may.zip.Google Scholar

  • NIR Hungary, 2014: National Inventory Report of Hungary. Available at: http://unfccc.int/files/national_reports/annex_i_ghg_inventories/national_inventories_submissions/application/zip/hun-2014-nir-27may.zip.Google Scholar

  • Pilli, R., Grassi, G., Kurz, W., Smyth, C. E., Blujdea, V., 2013: Application of the CBM-CFS3 model to estimate Italy’s forest carbon budget, 1995-2020. Ecological Modelling, 266:144-171.Google Scholar

  • Rasztovits, E., Móricz, N., Berki, I., Pötzelsberger, E., Mátyás, C., 2012: Evaluating the performance of stochastic distribution models for European beech at low-elevation xeric limits. Időjárás, 116:73-194.Google Scholar

  • Rasztovits, E., Berki, I., Mátyás, C., Czimber, K., Pötzelsberger, E., Móricz, N., 2014: The incorporation of extreme drought events improves models for beech persistence at its distribution limit. Annals of Forest Science, Springer Verlag, 71:201-210.Google Scholar

  • Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., Pilz, T., 2013a: Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Annals of Forest Science, 71:211-225.Google Scholar

  • Rötzer, T., Seifert, T., Pretzsch, H., 2009: Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. European Journal of Forest Research, 128:171-182.Google Scholar

  • Schmid, S., Thürig, E., Kaufmann, E., Lischke, H., Bugmann, H., 2006: Effect of forest management on future carbon pools and fluxes: A model comparison. Forest Ecology and Management, 237:65-82.Google Scholar

  • Seidl, R., Schelhaas, M. J., Rammer, W., Verkerk, P. J., 2014: Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang, 4:806-810.Google Scholar

  • Smyth, C. E., Stinson, G., Neilson, E., Lemprière, T. C., Hafer, M., Rampley, G. J. et al., 2014: Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences, 11:3515-3529.Google Scholar

  • Sommers, W. T., Loehman, R. A., Hardy, C. C., 2014: Wildland fire emissions, carbon, and climate: Science overview and knowledge needs. Forest Ecology and Management, 317:1-8.Google Scholar

  • Somogyi, Z., 2006: Report on options for the forestry sector of Hungary for the first Commitment Period of the Kyoto Protocol. Background study for the Ministry of Environment, Budapest.Google Scholar

  • Somogyi, Z., 2008a: Recent trends of tree growth in relation to climate change in Hungary. Acta Silvatica & Lignaria Hungarica, 4:17-27.Google Scholar

  • Somogyi, Z., 2008b: A hazai erdők üvegház hatású gáz leltára az IPCC módszertana szerint. Erdészeti Kutatások, 92:145-162. Available at: http://www.scientia.hu/cv/2008/Somogyi_EK_2008.pdf.Google Scholar

  • Somogyi, Z., 2010: CASMOFOR. In: Somogyi, Z., Hidy, D., Gelybó, Gy., Barcza, Z., Churkina, G., Haszpra, L. et al., 2010: Modelling of biosphere-atmosphere exchange of greenhouse gases: Models and their adaptation. In: Haszpra, L. (ed.): Atmospheric Greenhouse Gases: The Hungarian Perspective, p. 201-228.Google Scholar

  • Susaeta, A., Carter, D. R., Adams, D. C., 2014: Sustainability of forest management under changing climatic conditions in the southern United States: Adaptation strategies, economic rents and carbon sequestration. Journal of Environmental Management, 139:80-87.Google Scholar

  • Tatarinov, F. A., Cienciala, E., 2009: Long-term simulation of the effect of climate changes on the growth of main Central-European forest tree species. Ecological Modelling, 220:3081-3088.Google Scholar

  • Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., Araujo, M. B., 2011: Consequences of climate change on the tree of life in Europe. Nature, 470:531-534.Google Scholar

  • Usoltsev, V. A., 2001: Forest Biomass of Northern Eurasia: Database and Geography. Russian Academy of Sciences, Ural Branch. Yekaterinburg, 707 p. (in Russian).Google Scholar

  • Vayreda, J., Martinez-Vilalta, J., Gracia, M., Retana, J., 2012: Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Global Change Biology, 18:1028-1041.CrossrefGoogle Scholar

  • Veperdi, G., 2013: Az erdőállományok növekedésmenetének és természeti kockázatainak változásai. Research report under the project “Az előrevetített klímaváltoás hatáselemzése és az alkalmazkodás lehetőségei az erdészeti és az agrárszektorban, TÁMOP-4.2.2.A-11/1/KONV”, 22 p.Google Scholar

  • Wamelink, G. W. W., Wieggers, H. J. J., Reinds, G. J., Kros, J., Mol-Dijkstra, J. P. et al., 2009: Modelling impacts of changes in carbon dioxide concentration, climate and nitrogen deposition on carbon sequestration by European forests and forest soils. Forest Ecology Management, 258:1794-1805.Google Scholar

  • Yousefpour, C. T., Bugmann, H., Che, E., Hanewinkel, M., Meilby, H., Jacobsen, J. B. et al., 2013: Updating beliefs and combining evidence in adaptive forest management under climate change: A case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany. Journal of Environmental Management, 122:56-64.Google Scholar

  • Zang, X-Q., Xu, D., 2003: Potential carbon sequestration in China’s forests. Environmental Science & Policy, 6:421-432.CrossrefGoogle Scholar

  • Zimmermann, N. E., Yoccoz, N. G., Edwards, T. C., Jr, Meier, E. S., Thuiller, W., Guisan, A. et al., 2009: Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the United States of America, 106:19723-19728.Google Scholar

  • Zimmermann, N. E., Schmatz, D. R., Psomas, A., 2013: Climate Change Scenarios to 2100 and Implications for Forest Management. In: Fitzgerald, J. & Lindner, M. (eds.), 2013: Adapting to climate change in European forests - Results of the MOTIVE project. Pensoft Publishers, Sofia, 108 p. Available at: http://motive-project.net/NPDOCS/MOTIVE2_FINAL_FULL.pdf, p. 9-14.Google Scholar

  • Zimmermann, N. E., Normand, S., Pearman, P. B., Psomas, A., 2013: Future ranges in European tree species. In: Fitzgerald, J. and Lindner, M. (eds.), 2013: Adapting to climate change in European forests - Results of the MOTIVE project. Pensoft Publishers, Sofia, 108 p. Available at: http://motive-project.net/NPDOCS/MOTIVE2_FINAL_FULL.pdf, p. 15-21 Google Scholar

About the article

Published Online: 2016-06-03

Published in Print: 2016-03-01

Citation Information: Forestry Journal, Volume 62, Issue 1, Pages 3–14, ISSN (Online) 0323-1046, DOI: https://doi.org/10.1515/forj-2016-0001.

Export Citation

© by Zoltán Somogyi. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in