Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Brüdern, Jörg / Cohen, Frederick R. / Droste, Manfred / Duzaar, Frank / Neeb, Karl-Hermann / Noguchi, Junjiro / Shahidi, Freydoon / Sogge, Christopher D. / Wienhard, Anna

6 Issues per year


IMPACT FACTOR 2016: 0.755
5-year IMPACT FACTOR: 0.789

CiteScore 2016: 0.67

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.168

Mathematical Citation Quotient (MCQ) 2015: 0.66

Online
ISSN
1435-5337
See all formats and pricing
In This Section
Volume 19, Issue 1 (Jan 2007)

Issues

A Burgess-like subconvex bound for twisted L-functions

V Blomer
  • Mathematisches Institut, Bunsenstrasse 3-5, D-37073 Göttingen, Germany.
  • Email:
/ G Harcos
  • The University of Texas at Austin, Mathematics Department, 1 University Station C1200, Austin, TX 78712-0257, USA.
  • Email:
/ P Michel
  • I3M, UMR CNRS 5149, Université Montpellier II CC 051, 34095 Montpellier Cedex 05, France.
  • Email:
/ Z Mao
  • Department of Mathematics and Computer Science, Rutgers University, Newark, NJ 07102-1811, USA.
  • Email:
Published Online: 2007-02-21 | DOI: https://doi.org/10.1515/FORUM.2007.003

Abstract

Let g be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus, χ a primitive character of conductor q, and s a point on the critical line ℜs = ½. It is proved that

, where ε > 0 is arbitrary and θ = is the current known approximation towards the Ramanujan–Petersson conjecture (which would allow θ = 0); moreover, the dependence on s and all the parameters of g is polynomial. This result is an analog of Burgess' classical subconvex bound for Dirichlet L-functions. In Appendix 2 the above result is combined with a theorem of Waldspurger and the adelic calculations of Baruch–Mao to yield an improved uniform upper bound for the Fourier coefficients of holomorphic half-integral weight cusp forms.

About the article


Received: 2004-11-23

Published Online: 2007-02-21

Published in Print: 2007-01-29


Citation Information: Forum Mathematicum, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/FORUM.2007.003.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Han Wu
Geometric and Functional Analysis, 2014, Volume 24, Number 3, Page 968
[2]
Kathrin Bringmann, Pavel Guerzhoy, and Ben Kane
Advances in Mathematics, 2014, Volume 255, Page 641
[3]
Ritabrata Munshi
Mathematische Annalen, 2014, Volume 358, Number 1-2, Page 389
[4]
Nicolas Templier and Jacob Tsimerman
Israel Journal of Mathematics, 2013, Volume 195, Number 2, Page 677
[5]
NIGEL WATT
International Journal of Number Theory, 2008, Volume 04, Number 02, Page 249
[6]
Eeva Suvitie
Journal of Number Theory, 2012, Volume 132, Number 9, Page 2046
[7]
F. Chamizo, E. Cristóbal, and A. Ubis
Journal of Mathematical Analysis and Applications, 2009, Volume 350, Number 1, Page 283
[8]
Guillaume Ricotta and Emmanuel Royer
Forum Mathematicum, 2011, Volume 23, Number 5
[9]
Valentin Blomer and Gergely Harcos
Journal für die reine und angewandte Mathematik (Crelles Journal), 2008, Volume 2008, Number 621
[10]
Valentin Blomer and Gergely Harcos
Geometric and Functional Analysis, 2010, Volume 20, Number 1, Page 1
[11]
A. Diaconu and P. Garrett
Journal of the Institute of Mathematics of Jussieu, 2010, Volume 9, Number 01, Page 95

Comments (0)

Please log in or register to comment.
Log in