Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Brüdern, Jörg / Cohen, Frederick R. / Droste, Manfred / Duzaar, Frank / Neeb, Karl-Hermann / Noguchi, Junjiro / Shahidi, Freydoon / Sogge, Christopher D. / Wienhard, Anna

6 Issues per year


IMPACT FACTOR 2016: 0.755
5-year IMPACT FACTOR: 0.789

CiteScore 2016: 0.67

SCImago Journal Rank (SJR) 2016: 1.000
Source Normalized Impact per Paper (SNIP) 2016: 1.168

Mathematical Citation Quotient (MCQ) 2016: 0.75

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 25, Issue 2 (Mar 2013)

Issues

Complex Osserman Kähler manifolds in dimension four

Miguel Brozos-Vázquez
  • Mathematics Department, E. U. Politécnica, University of A Coruña, 15405 Ferrol, Spain
  • Email:
/ Peter Gilkey
  • Mathematics Department, University of Oregon, Eugene OR 97403, USA
  • Email:
Published Online: 2013-03-01 | DOI: https://doi.org/10.1515/form.2011.119

Abstract.

Let be a 4-dimensional almost-Hermitian manifold which satisfies the Kähler identity. We show that is complex Osserman if and only if has constant holomorphic sectional curvature. We also classify in arbitrary dimensions all the complex Osserman Kähler models which do not have three eigenvalues.

Keywords: Complex Osserman model; Jacobi operator; Kähler manifold; Osserman conjecture

About the article

Received: 2010-04-05

Published Online: 2013-03-01

Published in Print: 2013-03-01


Citation Information: Forum Mathematicum, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/form.2011.119.

Export Citation

© 2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in