Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Brüdern, Jörg / Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna

6 Issues per year


IMPACT FACTOR 2017: 0.695
5-year IMPACT FACTOR: 0.750

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.966
Source Normalized Impact per Paper (SNIP) 2017: 0.889

Mathematical Citation Quotient (MCQ) 2016: 0.75

Online
ISSN
1435-5337
See all formats and pricing
More options …
Volume 24, Issue 3

Issues

-variable fractals: dimension results

Michael Barnsley / John E. Hutchinson / Örjan Stenflo
Published Online: 2012-05-01 | DOI: https://doi.org/10.1515/form.2011.075

Abstract.

The families of -variable fractals for , together with their natural probability distributions, interpolate between the corresponding families of random homogeneous fractals and of random recursive fractals. We investigate certain random matrices associated with these fractals and use them to compute the almost sure Hausdorff dimension of -variable fractals satisfying the uniform open set condition.

Keywords: -variable fractals; Hausdorff dimension

About the article

Received: 2009-08-20

Revised: 2010-05-13

Published Online: 2012-05-01

Published in Print: 2012-05-01


Citation Information: Forum Mathematicum, Volume 24, Issue 3, Pages 445–470, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/form.2011.075.

Export Citation

© 2012 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bhagwati Prasad and Kuldip Katiyar
Indian Journal of Science and Technology, 2017, Volume 10, Number 28, Page 1
[2]
JONATHAN M. FRASER, JUN JIE MIAO, and SASCHA TROSCHEIT
Ergodic Theory and Dynamical Systems, 2016, Page 1
[3]
ESA JÄRVENPÄÄ, MAARIT JÄRVENPÄÄ, MENG WU, and WEN WU
Mathematical Proceedings of the Cambridge Philosophical Society, 2017, Volume 162, Number 02, Page 367
[4]
JONATHAN M. FRASER and PABLO SHMERKIN
Ergodic Theory and Dynamical Systems, 2016, Volume 36, Number 08, Page 2463
[5]
FRANKLIN MENDIVIL and ÖRJAN STENFLO
Fractals, 2015, Volume 23, Number 02, Page 1550007
[6]
ESA JÄRVENPÄÄ, MAARIT JÄRVENPÄÄ, BING LI, and ÖRJAN STENFLO
Ergodic Theory and Dynamical Systems, 2016, Volume 36, Number 05, Page 1516
[7]
Jan Andres and Miroslav Rypka
Chaos, Solitons & Fractals, 2013, Volume 57, Page 146
[8]
Michael Barnsley and Andrew Vince
Bulletin of Mathematical Sciences, 2013, Volume 3, Number 2, Page 299

Comments (0)

Please log in or register to comment.
Log in