[1]

L. P. Belluce and A. Di Nola,
Commutative rings whose ideals form an MV-algebra,
MLQ Math. Log. Q. 55 (2009), no. 5, 468–486.
CrossrefGoogle Scholar

[2]

L. P. Belluce, A. Di Nola and A. R. Ferraioli,
MV-semirings and their sheaf representations,
Order 30 (2013), no. 1, 165–179.
CrossrefGoogle Scholar

[3]

L. P. Belluce, A. Di Nola and A. R. Ferraioli,
Ideals of MV-semirings and MV-algebras,
Tropical and Idempotent Mathematics and Applications,
Contemp. Math. 616,
American Mathematical Society, Providence (2014), 59–75.
Google Scholar

[4]

W. Bruns and J. Gubeladze,
Polytopes, Rings, and *K*-theory,
Springer Monogr. Math.,
Springer, Dordrecht, 2009.
Google Scholar

[5]

M. Busaniche, L. Cabrer and D. Mundici,
Confluence and combinatorics in finitely generated unital lattice-ordered abelian groups,
Forum Math. 24 (2012), no. 2, 253–271.
Web of ScienceGoogle Scholar

[6]

G. Cǎlugǎreanu and T. Y. Lam,
Fine rings: A new class of simple rings,
J. Algebra Appl. 15 (2016), no. 9, Article ID 1650173.
Web of ScienceGoogle Scholar

[7]

A. Connes and C. Consani,
Characteristic 1, entropy and the absolute point,
Noncommutative Geometry, Arithmetic, and Related Topics,
Johns Hopkins University, Baltimore (2011), 75–139.
Google Scholar

[8]

A. Connes and C. Consani,
Geometry of the arithmetic site,
Adv. Math. 291 (2016), 274–329.
CrossrefWeb of ScienceGoogle Scholar

[9]

A. Di Nola and B. Gerla,
Algebras of Lukasiewicz’s logic and their semiring reducts,
Idempotent Mathematics and Mathematical Physics,
Contemp. Math. 377,
American Mathematical Society, Providence (2005), 131–144.
Google Scholar

[10]

A. Di Nola and C. Russo,
The semiring-theoretic approach to MV-algebras: A survey,
Fuzzy Sets and Systems 281 (2015), 134–154.
CrossrefWeb of ScienceGoogle Scholar

[11]

M. Droste, W. Kuich and H. Vogler,
Handbook of Weighted Automata,
Monogr. Theoret. Comput. Sci. EATCS Ser.,
Springer, Berlin, 2009.
Google Scholar

[12]

R. El Bashir, J. Hurt, A. Jančařík and T. Kepka,
Simple commutative semirings,
J. Algebra 236 (2001), no. 1, 277–306.
Web of ScienceCrossrefGoogle Scholar

[13]

A. Gathmann,
Tropical algebraic geometry,
Jahresber. Deutsch. Math.-Verein. 108 (2006), no. 1, 3–32.
Google Scholar

[14]

J. S. Golan,
Semirings and Their Applications,
Kluwer Academic, Dordrecht, 1999.
Google Scholar

[15]

S. N. Il’in, Y. Katsov and T. G. Nam,
Toward homological structure theory of semimodules: On semirings all of whose cyclic semimodules are projective,
J. Algebra 476 (2017), 238–266.
CrossrefWeb of ScienceGoogle Scholar

[16]

I. Itenberg, G. Mikhalkin and E. Shustin,
Tropical Algebraic Geometry, 2nd ed.,
Oberwolfach Semin. 35,
Birkhäuser, Basel, 2009.
Google Scholar

[17]

Z. Izhakian and L. Rowen,
Congruences and coordinate semirings of tropical varieties,
Bull. Sci. Math. 140 (2016), no. 3, 231–259.
Web of ScienceCrossrefGoogle Scholar

[18]

J. Ježek, V. Kala and T. Kepka,
Finitely generated algebraic structures with various divisibility conditions,
Forum Math. 24 (2012), no. 2, 379–397.
Web of ScienceGoogle Scholar

[19]

J. Ježek and T. Kepka,
Finitely generated commutative division semirings,
Acta Univ. Carolin. Math. Phys. 51 (2010), no. 1, 3–27.
Google Scholar

[20]

V. Kala,
Lattice-ordered abelian groups finitely generated as semirings,
J. Commut. Algebra 9 (2017), no. 3, 387–412.
Web of ScienceCrossrefGoogle Scholar

[21]

V. Kala and T. Kepka,
A note on finitely generated ideal-simple commutative semirings,
Comment. Math. Univ. Carolin. 49 (2008), no. 1, 1–9.
Google Scholar

[22]

V. Kala, T. Kepka and M. Korbelář,
Notes on commutative parasemifields,
Comment. Math. Univ. Carolin. 50 (2009), no. 4, 521–533.
Google Scholar

[23]

Y. Katsov, T. G. Nam and J. Zumbrägel,
On simpleness of semirings and complete semirings,
J. Algebra Appl. 13 (2014), no. 6, Article ID 1450015.
Web of ScienceGoogle Scholar

[24]

B. Keller,
Cluster algebras and derived categories,
Derived Categories in Algebraic Geometry,
EMS Ser. Congr. Rep.,
European Mathematical Society, Zürich (2012), 123–183.
Google Scholar

[25]

T. Kepka and M. Korbelář,
Conjectures on additively divisible commutative semirings,
Math. Slovaca 66 (2016), no. 5, 1059–1064.
Web of ScienceGoogle Scholar

[26]

E. Leichtnam,
A classification of the commutative Banach perfect semi-fields of characteristic 1: Applications,
Math. Ann. 369 (2017), no. 1–2, 653–703.
CrossrefWeb of ScienceGoogle Scholar

[27]

G. L. Litvinov,
The Maslov dequantization, idempotent and tropical mathematics: A very brief introduction,
Idempotent Mathematics and Mathematical Physics,
Contemp. Math. 377,
American Mathematical Society, Providence (2005), 1–17.
Google Scholar

[28]

G. Maze, C. Monico and J. Rosenthal,
Public key cryptography based on semigroup actions,
Adv. Math. Commun. 1 (2007), no. 4, 489–507.
CrossrefGoogle Scholar

[29]

C. J. Monico,
Semirings and Semigroup Actions in Public-key Cryptography,
ProQuest LLC, Ann Arbor, 2002,
Thesis (Ph.D.)–University of Notre Dame.
Google Scholar

[30]

D. Mundici,
Interpretation of AF ${C}^{\ast}$-algebras in łukasiewicz sentential calculus,
J. Funct. Anal. 65 (1986), no. 1, 15–63.
Google Scholar

[31]

D. Mundici,
Introducing MV-algebras,
preprint, http://msekce.karlin.mff.cuni.cz/~ssaos/handout_mundici.pdf.

[32]

R. T. Rockafellar,
Convex Analysis,
Princeton Landmarks in Math.,
Princeton University Press, Princeton, 1997.
Google Scholar

[33]

F. M. Schneider and J. Zumbrägel,
Every simple compact semiring is finite,
Topology Appl. 206 (2016), 305–310.
Web of ScienceCrossrefGoogle Scholar

[34]

K. Thas,
Absolute Arithmetic and ${\mathbb{F}}_{1}$-geometry,
European Mathematical Society, Zürich, 2016.
Google Scholar

[35]

E. M. Vechtomov and A. V. Cheraneva,
Semifields and their properties (in Russian),
Fundam. Prikl. Mat. 14 (2008), no. 5, 3–54;
translated in J. Math. Sci. (N. Y.) 163 (2009), no. 6, 625–661.
Google Scholar

[36]

H. J. Weinert,
Über Halbringe und Halbkörper. I,
Acta Math. Acad. Sci. Hungar. 13 (1962), no. 3–4, 365–378.
CrossrefGoogle Scholar

[37]

H. J. Weinert and R. Wiegandt,
On the structure of semifields and lattice-ordered groups,
Period. Math. Hungar. 32 (1996), no. 1–2, 129–147.
CrossrefGoogle Scholar

[38]

J. Zumbrägel,
Public-key cryptography based on simple semirings,
PhD Thesis, Universität Zürich, Zürich, 2008.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.