[1]

R. Arens,
Operations induced in function classes,
Monatsh. Math. 55 (1951), 1–19.
CrossrefGoogle Scholar

[2]

R. Arens,
The adjoint of a bilinear operation,
Proc. Amer. Math. Soc. 2 (1951), 839–848.
CrossrefGoogle Scholar

[3]

A. Arhangel’skii and M. Tkachenko,
Topological Groups and Related Structures,
Atlantis Stud. Math. 1,
Atlantis Press, Paris, 2008.
Google Scholar

[4]

J. F. Berglund, H. D. Junghenn and P. Milnes,
Analysis on Semigroups,
Can. Math. Soc. Ser. Monogr. Adv. Texts,
John Wiley & Sons, New York, 1989.
Google Scholar

[5]

F. F. Bonsall and J. Duncan,
Complete Normed Algebras,
Ergeb. Math. Grenzgeb. (3) 80,
Springer, Berlin, 1973.
Google Scholar

[6]

A. Bouziad and M. Filali,
On the size of quotients of function spaces on a topological group,
Studia Math. 202 (2011), no. 3, 243–259.
CrossrefGoogle Scholar

[7]

T. Budak, N. Işık and J. Pym,
Minimal determinants of topological centres for some algebras associated with locally compact groups,
Bull. Lond. Math. Soc. 43 (2011), no. 3, 495–506.
CrossrefGoogle Scholar

[8]

C. Chou,
Weakly almost periodic functions and Fourier–Stieltjes algebras of locally compact groups,
Trans. Amer. Math. Soc. 274 (1982), no. 1, 141–157.
CrossrefGoogle Scholar

[9]

P. Civin and B. Yood,
The second conjugate space of a Banach algebra as an algebra,
Pacific J. Math. 11 (1961), 847–870.
CrossrefGoogle Scholar

[10]

H. G. Dales,
Banach Algebras and Automatic Continuity,
London Math. Soc. Monogr. New Ser. 24,
Oxford University Press, New York, 2000.
Google Scholar

[11]

H. G. Dales and A. T.-M. Lau,
The second duals of Beurling algebras,
Mem. Amer. Math. Soc. 177 (2005), no. 836.
Google Scholar

[12]

H. F. Davis,
A note on Haar measure,
Proc. Amer. Math. Soc. 6 (1955), 318–321.
CrossrefGoogle Scholar

[13]

M. M. Day,
Amenable semigroups,
Illinois J. Math. 1 (1957), 509–544.
Google Scholar

[14]

P. Eymard,
L’algèbre de Fourier d’un groupe localement compact,
Bull. Soc. Math. France 92 (1964), 181–236.
Google Scholar

[15]

M. Filali and J. Galindo,
Approximable $\mathcal{\mathcal{W}}\mathcal{\mathcal{A}}\mathcal{\mathcal{P}}$- and $\mathcal{\mathcal{L}}\mathcal{\mathcal{U}}\mathcal{\mathcal{C}}$-interpolation sets,
Adv. Math. 233 (2013), 87–114.
Google Scholar

[16]

M. Filali and J. Galindo,
Interpolation sets and the size of quotients of function spaces on a locally compact group,
Trans. Amer. Math. Soc. 369 (2017), no. 1, 575–603.
Google Scholar

[17]

M. Filali and P. Salmi,
Slowly oscillating functions in semigroup compactifications and convolution algebras,
J. Funct. Anal. 250 (2007), no. 1, 144–166.
CrossrefGoogle Scholar

[18]

M. Filali and A. I. Singh,
Recent developments on Arens regularity and ideal structure of the second dual of a group algebra and some related topological algebras,
General Topological Algebras (Tartu 1999),
Math. Stud. (Tartu) 1,
Estonian Mathematical Society, Tartu (2001), 95–124.
Google Scholar

[19]

M. Filali and T. Vedenjuoksu,
Extreme non-Arens regularity of semigroup algebras,
Topology Proc. 33 (2009), 185–196.
Google Scholar

[20]

G. B. Folland,
Real Analysis: Modern Techniques and Their Applications,
Pure Appl. Math. (New York),
John Wiley & Sons, New York, 1984.
Google Scholar

[21]

G. B. Folland,
A Course in Abstract Harmonic Analysis,
Stud. Adv. Math.,
CRC Press, Boca Raton, 1995.
Google Scholar

[22]

C. K. Fong and M. Neufang,
On the quotient space $UC(G)/WAP(G)$ and extreme non Arens regularity of ${L}^{1}(G)$,
preprint (2006).

[23]

B. Forrest,
Arens regularity and discrete groups,
Pacific J. Math. 151 (1991), no. 2, 217–227.
CrossrefGoogle Scholar

[24]

D. H. Fremlin,
Measure Theory. Vol. 3: Measure Algebras,
Torres Fremlin, Colchester, 2004.
Google Scholar

[25]

E. E. Granirer,
Day points for quotients of the Fourier algebra $A(G)$, extreme nonergodicity of their duals and extreme non-Arens regularity,
Illinois J. Math. 40 (1996), no. 3, 402–419.
Google Scholar

[26]

S. Grekas,
Isomorphic measures on compact groups,
Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 2, 349–360.
CrossrefGoogle Scholar

[27]

S. Grekas and S. Mercourakis,
On the measure-theoretic structure of compact groups,
Trans. Amer. Math. Soc. 350 (1998), no. 7, 2779–2796.
CrossrefGoogle Scholar

[28]

M. Grosser and V. Losert,
The norm-strict bidual of a Banach algebra and the dual of ${C}_{u}(G)$,
Manuscripta Math. 45 (1984), no. 2, 127–146.
Google Scholar

[29]

S. L. Gulick,
Commutativity and ideals in the biduals of topological algebras,
Pacific J. Math. 18 (1966), 121–137.
CrossrefGoogle Scholar

[30]

E. Hewitt and K. A. Ross,
Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups. Integration Theory, Group Representations,
Grundlehren Math. Wiss. 115,
Springer, Berlin, 1963.
Google Scholar

[31]

K. H. Hofmann and S. A. Morris,
The Structure of Compact Groups,
De Gruyter Stud. Math. 25,
Walter de Gruyter, Berlin, 1998.
Google Scholar

[32]

Z. Hu,
On the set of topologically invariant means on the von Neumann algebra $\mathrm{VN}(G)$,
Illinois J. Math. 39 (1995), no. 3, 463–490.
Google Scholar

[33]

Z. Hu,
Extreme non-Arens regularity of quotients of the Fourier algebra $A(G)$,
Colloq. Math. 72 (1997), no. 2, 237–249.
Google Scholar

[34]

Z. Hu and M. Neufang,
Decomposability of von Neumann algebras and the Mazur property of higher level,
Canad. J. Math. 58 (2006), no. 4, 768–795.
CrossrefGoogle Scholar

[35]

Z. Hu and M. Neufang,
Distinguishing properties of Arens irregularity,
Proc. Amer. Math. Soc. 137 (2009), no. 5, 1753–1761.
Google Scholar

[36]

N. I̧sik, J. Pym and A. Ülger,
The second dual of the group algebra of a compact group,
J. Lond. Math. Soc. (2) 35 (1987), no. 1, 135–148.
Google Scholar

[37]

A. T. M. Lau and V. Losert,
On the second conjugate algebra of ${L}_{1}(G)$ of a locally compact group,
J. Lond. Math. Soc. (2) 37 (1988), no. 3, 464–470.
Google Scholar

[38]

A. T. M. Lau and J. C. S. Wong,
Weakly almost periodic elements in ${L}_{\mathrm{\infty}}(G)$ of a locally compact group,
Proc. Amer. Math. Soc. 107 (1989), no. 4, 1031–1036.
Google Scholar

[39]

V. Losert,
Talk at Abstract Harmonic Analysis Conference,
Istanbul, 2006.

[40]

V. Losert,
The centre of the bidual of Fourier algebras (discrete groups),
Bull. Lond. Math. Soc. 48 (2016), no. 6, 968–976.
CrossrefGoogle Scholar

[41]

P. S. Mostert,
Sections in principal fibre spaces,
Duke Math. J. 23 (1956), 57–71.
CrossrefGoogle Scholar

[42]

M. Neufang,
A unified approach to the topological centre problem for certain Banach algebras arising in abstract harmonic analysis,
Arch. Math. (Basel) 82 (2004), no. 2, 164–171.
CrossrefGoogle Scholar

[43]

T. W. Palmer,
Banach Algebras and the General Theory of *-Algebras. Vol. I: Algebras and Banach Algebras,
Encyclopedia Math. Appl. 49,
Cambridge University Press, Cambridge, 1994.
Google Scholar

[44]

J. S. Pym,
The convolution of functionals on spaces of bounded functions,
Proc. Lond. Math. Soc. (3) 15 (1965), 84–104.
Google Scholar

[45]

H. Reiter and J. D. Stegeman,
Classical Harmonic Analysis and Locally Compact Groups, 2nd ed.,
London Math. Soc. Monogr. New Ser. 22,
Oxford University Press, New York, 2000.
Google Scholar

[46]

H. P. Rosenthal,
On injective Banach spaces and the spaces ${L}^{\mathrm{\infty}}(\mu )$ for finite measure μ,
Acta Math. 124 (1970), 205–248.
Google Scholar

[47]

H. L. Royden,
Real Analysis,
Macmillan, New York, 1963.
Google Scholar

[48]

S. Sherman,
The second adjoint of a $C*$-algebra,
Proceedings of The International Congress of Mathematicians. Vol. 1 (Cambridge 1950),
American Mathematical Society, Providence (1952), 470–470.
Google Scholar

[49]

Z. Takeda,
Conjugate spaces of operator algebras,
Proc. Japan Acad. 30 (1954), 90–95.
CrossrefGoogle Scholar

[50]

A. Ülger,
Continuity of weakly almost periodic functionals on ${L}^{1}(G)$,
Quart. J. Math. Oxford Ser. (2) 37 (1986), no. 148, 495–497.
Google Scholar

[51]

H. Yamabe,
A generalization of a theorem of Gleason,
Ann. of Math. (2) 58 (1953), 351–365.
CrossrefGoogle Scholar

[52]

N. J. Young,
Separate continuity and multilinear operations,
Proc. Lond. Math. Soc. (3) 26 (1973), 289–319.
Google Scholar

[53]

N. J. Young,
The irregularity of multiplication in group algebras,
Quart J. Math. Oxford Ser. (2) 24 (1973), 59–62.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.