[1]

A. L. Agore,
The maximal dimension of unital subalgebras of the matrix algebra,
Forum Math. 29 (2017), no. 1, 1â5.
CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[2]

I. Assem, T. BrĂŒstle and R. Schiffler,
Cluster-tilted algebras and slices,
J. Algebra 319 (2008), no. 8, 3464â3479.
WebÂ ofÂ ScienceCrossrefGoogleÂ Scholar

[3]

I. Assem, T. BrĂŒstle and R. Schiffler,
Cluster-tilted algebras as trivial extensions,
Bull. Lond. Math. Soc. 40 (2008), no. 1, 151â162.
CrossrefGoogleÂ Scholar

[4]

I. Assem, F. U. Coelho and S. Trepode,
The bound quiver of a split extension,
J. Algebra Appl. 7 (2008), no. 4, 405â423.
WebÂ ofÂ ScienceCrossrefGoogleÂ Scholar

[5]

I. Assem and N. Marmaridis,
Tilting modules over split-by-nilpotent extensions,
Comm. Algebra 26 (1998), no. 5, 1547â1555.
CrossrefGoogleÂ Scholar

[6]

I. Assem and D. Zacharia,
Full embeddings of almost split sequences over split-by-nilpotent extensions,
Colloq. Math. 81 (1999), no. 1, 21â31.
CrossrefGoogleÂ Scholar

[7]

I. Assem and D. Zacharia,
On split-by-nilpotent extensions,
Colloq. Math. 98 (2003), no. 2, 259â275.
CrossrefGoogleÂ Scholar

[8]

M. Auslander, I. Reiten and S. O. SmalĂž,
Representation Theory of Artin Algebras,
Cambridge Stud. Adv. Math. 36,
Cambridge Universitys, Cambridge, 1995.
GoogleÂ Scholar

[9]

V. Baranovsky,
The variety of pairs of commuting nilpotent matrices is irreducible,
Transform. Groups 6 (2001), no. 1, 3â8.
CrossrefGoogleÂ Scholar

[10]

R. Basili,
On the irreducibility of varieties of commuting matrices,
J. Pure Appl. Algebra 149 (2000), no. 2, 107â120.
CrossrefGoogleÂ Scholar

[11]

R. Basili,
On the number of irreducible components of commuting varieties,
J. Pure Appl. Algebra 149 (2000), no. 2, 121â126.
CrossrefGoogleÂ Scholar

[12]

R. Basili,
On the irreducibility of commuting varieties of nilpotent matrices,
J. Algebra 268 (2003), no. 1, 58â80.
CrossrefGoogleÂ Scholar

[13]

A. B. Buan, R. J. Marsh and I. Reiten,
Cluster-tilted algebras,
Trans. Amer. Math. Soc. 359 (2007), no. 1, 323â332.
CrossrefGoogleÂ Scholar

[14]

S. Caenepeel, G. Militaru and S. Zhu,
Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations,
Lecture Notes in Math. 1787,
Springer., Berlin, 2002.
GoogleÂ Scholar

[15]

S. Caenepeel and B. Zhu,
Separable bimodules and approximation,
Algebr. Represent. Theory 8 (2005), no. 2, 207â223.
CrossrefGoogleÂ Scholar

[16]

S. DÄscÄlescu, C. NÄstÄsescu and C. Raianu,
Hopf Algebras. An Introduction,
Monogr. Textb. Pure Appl. Math. 235,
Marcel Dekker, New York, 2001.
GoogleÂ Scholar

[17]

E. B. Dynkin,
Maximal subgroups of the classical groups (in Russian),
Trudy Moskov. Mat. ObĆĄÄ. 1 (1952), 39â166;
translation in Amer. Math. Soc. Transl. 6 (1957), 245â378.
GoogleÂ Scholar

[18]

E. B. Dynkin,
Semisimple subalgebras of semisimple Lie algebras (in Russian),
Mat. Sbornik N.S. 30(72) (1952), 349â462;
translation in Amer. Math. Soc. Transl. 6 (1957), 111-244.
GoogleÂ Scholar

[19]

A. Elduque,
On maximal subalgebras of central simple Malâcev algebras,
J. Algebra 103 (1986), no. 1, 216â227.
CrossrefGoogleÂ Scholar

[20]

A. Elduque, J. Laliena and S. SacristĂĄn,
Maximal subalgebras of associative superalgebras,
J. Algebra 275 (2004), no. 1, 40â58.
CrossrefGoogleÂ Scholar

[21]

A. Elduque, J. Laliena and S. SacristĂĄn,
Maximal subalgebras of Jordan superalgebras,
J. Pure Appl. Algebra 212 (2008), no. 11, 2461â2478.
CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[22]

P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik,
Tensor Categories,
Math. Surveys Monogr. 205,
American Mathematical Society, Providence, 2015.
GoogleÂ Scholar

[23]

P. Gabriel,
Des catĂ©gories abĂ©liennes,
Bull. Soc. Math. France 90 (1962), 323â448.
GoogleÂ Scholar

[24]

M. Gerstenhaber,
On nilalgebras and linear varieties of nilpotent matrices. I,
Amer. J. Math. 80 (1958), 614â622.
CrossrefGoogleÂ Scholar

[25]

M. Gerstenhaber,
On dominance and varieties of commuting matrices,
Ann. of Math. (2) 73 (1961), 324â348.
CrossrefGoogleÂ Scholar

[26]

R. M. Guralnick,
A note on pairs of matrices with rank one commutator,
Linear and Multilinear Algebra 8 (1979/80), no. 2, 97â99.
CrossrefGoogleÂ Scholar

[27]

R. M. Guralnick,
A note on commuting pairs of matrices,
Linear Multilinear Algebra 31 (1992), no. 1â4, 71â75.
CrossrefGoogleÂ Scholar

[28]

R. M. Guralnick and M. D. Miller,
Maximal subfields of algebraically closed fields,
J. Aust. Math. Soc. Ser. A 29 (1980), no. 4, 462â468.
CrossrefGoogleÂ Scholar

[29]

M. Hazewinkel, N. Gubareni and V. V. Kirichenko,
Algebras, Rings and Modules. Vol. 2,
Math. Appl. (Springer) 586,
Springer, Dordrecht, 2007.
GoogleÂ Scholar

[30]

N. Jacobson,
Schurâs theorems on commutative matrices,
Bull. Amer. Math. Soc. 50 (1944), 431â436.
CrossrefGoogleÂ Scholar

[31]

L. Kadison,
New Examples of Frobenius Extensions,
Univ. Lecture Ser. 14,
American Mathematical Society, Providence, 1999.
GoogleÂ Scholar

[32]

T. J. Laffey,
The minimal dimension of maximal commutative subalgebras of full matrix algebras,
Linear Algebra Appl. 71 (1985), 199â212.
CrossrefGoogleÂ Scholar

[33]

A. I. Malcev,
Commutative subalgebras of semi-simple Lie algebras,
Amer. Math. Soc. Transl. 1951 (1951), no. 40, Paper No. 15.
GoogleÂ Scholar

[34]

C. Martinez and E. Zelmanov,
Simple finite-dimensional Jordan superalgebras of prime characteristic,
J. Algebra 236 (2001), no. 2, 575â629.
CrossrefGoogleÂ Scholar

[35]

S. Maubach and I. Stampfli,
On maximal subalgebras,
J. Algebra 483 (2017), 1â36.
CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[36]

M. Mirzakhani,
A simple proof of a theorem of Schur,
Amer. Math. Monthly 105 (1998), no. 3, 260â262.
CrossrefGoogleÂ Scholar

[37]

T. S. Motzkin and O. Taussky,
Pairs of matrices with property $\mathrm{L}$,
Trans. Amer. Math. Soc. 73 (1952), 108â114.
GoogleÂ Scholar

[38]

T. S. Motzkin and O. Taussky,
Pairs of matrices with property *L*. II,
Trans. Amer. Math. Soc. 80 (1955), 387â401.
GoogleÂ Scholar

[39]

C. NÄstÄsescu, M. Van den Bergh and F. Van Oystaeyen,
Separable functors applied to graded rings,
J. Algebra 123 (1989), no. 2, 397â413.
CrossrefGoogleÂ Scholar

[40]

R. S. Pierce,
Associative Algebras,
Grad. Texts in Math. 88,
Springer, New York, 1982.
GoogleÂ Scholar

[41]

M. I. Platzeck,
Trivial extensions, iterated tilted algebras and cluster-tilted algebras,
SĂŁo Paulo J. Math. Sci. 4 (2010), no. 3, 499â527.
CrossrefGoogleÂ Scholar

[42]

A. Premet,
Nilpotent commuting varieties of reductive Lie algebras,
Invent. Math. 154 (2003), no. 3, 653â683.
CrossrefGoogleÂ Scholar

[43]

M. L. Racine,
On maximal subalgebras,
J. Algebra 30 (1974), 155â180.
CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[44]

M. L. Racine,
Maximal subalgebras of exceptional Jordan algebras,
J. Algebra 46 (1977), no. 1, 12â21.
CrossrefGoogleÂ Scholar

[45]

M. L. Racine,
Maximal subalgebras of central separable algebras,
Proc. Amer. Math. Soc. 68 (1978), no. 1, 11â15.
CrossrefGoogleÂ Scholar

[46]

M. D. Rafael,
Separable functors revisited,
Comm. Algebra 18 (1990), no. 5, 1445â1459.
CrossrefGoogleÂ Scholar

[47]

J. SchrĂ¶er,
Varieties of pairs of nilpotent matrices annihilating each other,
Comment. Math. Helv. 79 (2004), no. 2, 396â426.
CrossrefGoogleÂ Scholar

[48]

J. Schur,
Zur Theorie der vertauschbaren Matrizen,
J. Reine Angew. Math. 130 (1905), 66â76.
GoogleÂ Scholar

[49]

K. Serhiyenko,
Induced and coinduced modules over cluster-tilted algebras,
Doctoral Dissertations Paper 851, 2015, http://digitalcommons.uconn.edu/dissertations/851.

[50]

D. Simson, A. SkowroĆski and I. Assem,
Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory,
London Math. Soc. Stud. Texts 65,
Cambridge University, Cambridge, 2006.
GoogleÂ Scholar

## CommentsÂ (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.