Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Forum Mathematicum

Managing Editor: Bruinier, Jan Hendrik

Ed. by Cohen, Frederick R. / Droste, Manfred / Darmon, Henri / Duzaar, Frank / Echterhoff, Siegfried / Gordina, Maria / Neeb, Karl-Hermann / Shahidi, Freydoon / Sogge, Christopher D. / Takayama, Shigeharu / Wienhard, Anna


IMPACT FACTOR 2018: 0.867

CiteScore 2018: 0.71

SCImago Journal Rank (SJR) 2018: 0.898
Source Normalized Impact per Paper (SNIP) 2018: 0.964

Mathematical Citation Quotient (MCQ) 2017: 0.67

Online
ISSN
1435-5337
See all formats and pricing
More options …
Ahead of print

Issues

Maximal subalgebras of finite-dimensional algebras

Miodrag Cristian Iovanov / Alexander Harris Sistko
Published Online: 2019-06-14 | DOI: https://doi.org/10.1515/forum-2019-0033

Abstract

We study maximal associative subalgebras of an arbitrary finite-dimensional associative algebra B over a field 𝕂 and obtain full classification/description results of such algebras. This is done by first obtaining a complete classification in the semisimple case and then lifting to non-semisimple algebras. The results are sharpest in the case of algebraically closed fields and take special forms for algebras presented by quivers with relations. We also relate representation theoretic properties of the algebra and its maximal and other subalgebras and provide a series of embeddings between quivers, incidence algebras and other structures which relate indecomposable representations of algebras and some subalgebras via induction/restriction functors. Some results in literature are also re-derived as a particular case, and other applications are given.

Keywords: Maximal subalgebra; semisimple algebra; separable functor; separable; split; split-by-nilpotent

MSC 2010: 16S99; 16G60; 16G10; 16S50; 16W20

References

  • [1]

    A. L. Agore, The maximal dimension of unital subalgebras of the matrix algebra, Forum Math. 29 (2017), no. 1, 1–5. CrossrefWeb of ScienceGoogle Scholar

  • [2]

    I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras and slices, J. Algebra 319 (2008), no. 8, 3464–3479. Web of ScienceCrossrefGoogle Scholar

  • [3]

    I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), no. 1, 151–162. CrossrefGoogle Scholar

  • [4]

    I. Assem, F. U. Coelho and S. Trepode, The bound quiver of a split extension, J. Algebra Appl. 7 (2008), no. 4, 405–423. Web of ScienceCrossrefGoogle Scholar

  • [5]

    I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998), no. 5, 1547–1555. CrossrefGoogle Scholar

  • [6]

    I. Assem and D. Zacharia, Full embeddings of almost split sequences over split-by-nilpotent extensions, Colloq. Math. 81 (1999), no. 1, 21–31. CrossrefGoogle Scholar

  • [7]

    I. Assem and D. Zacharia, On split-by-nilpotent extensions, Colloq. Math. 98 (2003), no. 2, 259–275. CrossrefGoogle Scholar

  • [8]

    M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Universitys, Cambridge, 1995. Google Scholar

  • [9]

    V. Baranovsky, The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6 (2001), no. 1, 3–8. CrossrefGoogle Scholar

  • [10]

    R. Basili, On the irreducibility of varieties of commuting matrices, J. Pure Appl. Algebra 149 (2000), no. 2, 107–120. CrossrefGoogle Scholar

  • [11]

    R. Basili, On the number of irreducible components of commuting varieties, J. Pure Appl. Algebra 149 (2000), no. 2, 121–126. CrossrefGoogle Scholar

  • [12]

    R. Basili, On the irreducibility of commuting varieties of nilpotent matrices, J. Algebra 268 (2003), no. 1, 58–80. CrossrefGoogle Scholar

  • [13]

    A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332. CrossrefGoogle Scholar

  • [14]

    S. Caenepeel, G. Militaru and S. Zhu, Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations, Lecture Notes in Math. 1787, Springer., Berlin, 2002. Google Scholar

  • [15]

    S. Caenepeel and B. Zhu, Separable bimodules and approximation, Algebr. Represent. Theory 8 (2005), no. 2, 207–223. CrossrefGoogle Scholar

  • [16]

    S. Dăscălescu, C. Năstăsescu and C. Raianu, Hopf Algebras. An Introduction, Monogr. Textb. Pure Appl. Math. 235, Marcel Dekker, New York, 2001. Google Scholar

  • [17]

    E. B. Dynkin, Maximal subgroups of the classical groups (in Russian), Trudy Moskov. Mat. Obšč. 1 (1952), 39–166; translation in Amer. Math. Soc. Transl. 6 (1957), 245–378. Google Scholar

  • [18]

    E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras (in Russian), Mat. Sbornik N.S. 30(72) (1952), 349–462; translation in Amer. Math. Soc. Transl. 6 (1957), 111-244. Google Scholar

  • [19]

    A. Elduque, On maximal subalgebras of central simple Mal’cev algebras, J. Algebra 103 (1986), no. 1, 216–227. CrossrefGoogle Scholar

  • [20]

    A. Elduque, J. Laliena and S. Sacristán, Maximal subalgebras of associative superalgebras, J. Algebra 275 (2004), no. 1, 40–58. CrossrefGoogle Scholar

  • [21]

    A. Elduque, J. Laliena and S. Sacristán, Maximal subalgebras of Jordan superalgebras, J. Pure Appl. Algebra 212 (2008), no. 11, 2461–2478. CrossrefWeb of ScienceGoogle Scholar

  • [22]

    P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories, Math. Surveys Monogr. 205, American Mathematical Society, Providence, 2015. Google Scholar

  • [23]

    P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448. Google Scholar

  • [24]

    M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices. I, Amer. J. Math. 80 (1958), 614–622. CrossrefGoogle Scholar

  • [25]

    M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. (2) 73 (1961), 324–348. CrossrefGoogle Scholar

  • [26]

    R. M. Guralnick, A note on pairs of matrices with rank one commutator, Linear and Multilinear Algebra 8 (1979/80), no. 2, 97–99. CrossrefGoogle Scholar

  • [27]

    R. M. Guralnick, A note on commuting pairs of matrices, Linear Multilinear Algebra 31 (1992), no. 1–4, 71–75. CrossrefGoogle Scholar

  • [28]

    R. M. Guralnick and M. D. Miller, Maximal subfields of algebraically closed fields, J. Aust. Math. Soc. Ser. A 29 (1980), no. 4, 462–468. CrossrefGoogle Scholar

  • [29]

    M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 2, Math. Appl. (Springer) 586, Springer, Dordrecht, 2007. Google Scholar

  • [30]

    N. Jacobson, Schur’s theorems on commutative matrices, Bull. Amer. Math. Soc. 50 (1944), 431–436. CrossrefGoogle Scholar

  • [31]

    L. Kadison, New Examples of Frobenius Extensions, Univ. Lecture Ser. 14, American Mathematical Society, Providence, 1999. Google Scholar

  • [32]

    T. J. Laffey, The minimal dimension of maximal commutative subalgebras of full matrix algebras, Linear Algebra Appl. 71 (1985), 199–212. CrossrefGoogle Scholar

  • [33]

    A. I. Malcev, Commutative subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. 1951 (1951), no. 40, Paper No. 15. Google Scholar

  • [34]

    C. Martinez and E. Zelmanov, Simple finite-dimensional Jordan superalgebras of prime characteristic, J. Algebra 236 (2001), no. 2, 575–629. CrossrefGoogle Scholar

  • [35]

    S. Maubach and I. Stampfli, On maximal subalgebras, J. Algebra 483 (2017), 1–36. CrossrefWeb of ScienceGoogle Scholar

  • [36]

    M. Mirzakhani, A simple proof of a theorem of Schur, Amer. Math. Monthly 105 (1998), no. 3, 260–262. CrossrefGoogle Scholar

  • [37]

    T. S. Motzkin and O. Taussky, Pairs of matrices with property L, Trans. Amer. Math. Soc. 73 (1952), 108–114. Google Scholar

  • [38]

    T. S. Motzkin and O. Taussky, Pairs of matrices with property L. II, Trans. Amer. Math. Soc. 80 (1955), 387–401. Google Scholar

  • [39]

    C. Năstăsescu, M. Van den Bergh and F. Van Oystaeyen, Separable functors applied to graded rings, J. Algebra 123 (1989), no. 2, 397–413. CrossrefGoogle Scholar

  • [40]

    R. S. Pierce, Associative Algebras, Grad. Texts in Math. 88, Springer, New York, 1982. Google Scholar

  • [41]

    M. I. Platzeck, Trivial extensions, iterated tilted algebras and cluster-tilted algebras, São Paulo J. Math. Sci. 4 (2010), no. 3, 499–527. CrossrefGoogle Scholar

  • [42]

    A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), no. 3, 653–683. CrossrefGoogle Scholar

  • [43]

    M. L. Racine, On maximal subalgebras, J. Algebra 30 (1974), 155–180. CrossrefWeb of ScienceGoogle Scholar

  • [44]

    M. L. Racine, Maximal subalgebras of exceptional Jordan algebras, J. Algebra 46 (1977), no. 1, 12–21. CrossrefGoogle Scholar

  • [45]

    M. L. Racine, Maximal subalgebras of central separable algebras, Proc. Amer. Math. Soc. 68 (1978), no. 1, 11–15. CrossrefGoogle Scholar

  • [46]

    M. D. Rafael, Separable functors revisited, Comm. Algebra 18 (1990), no. 5, 1445–1459. CrossrefGoogle Scholar

  • [47]

    J. Schröer, Varieties of pairs of nilpotent matrices annihilating each other, Comment. Math. Helv. 79 (2004), no. 2, 396–426. CrossrefGoogle Scholar

  • [48]

    J. Schur, Zur Theorie der vertauschbaren Matrizen, J. Reine Angew. Math. 130 (1905), 66–76. Google Scholar

  • [49]

    K. Serhiyenko, Induced and coinduced modules over cluster-tilted algebras, Doctoral Dissertations Paper 851, 2015, http://digitalcommons.uconn.edu/dissertations/851.

  • [50]

    D. Simson, A. Skowroński and I. Assem, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge University, Cambridge, 2006. Google Scholar

About the article


Received: 2019-02-05

Published Online: 2019-06-14


Citation Information: Forum Mathematicum, ISSN (Online) 1435-5337, ISSN (Print) 0933-7741, DOI: https://doi.org/10.1515/forum-2019-0033.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in