[1]

H. Bass,
Algebraic *K*-theory,
W. A. Benjamin, New York, 1968.
Google Scholar

[2]

L. P. Belluce and A. Di Nola,
Commutative rings whose ideals form an MV-algebra,
MLQ Math. Log. Q. 55 (2009), no. 5, 468–486.
CrossrefGoogle Scholar

[3]

R. L. O. Cignoli, I. M. L. D’Ottaviano and D. Mundici,
Algebraic Foundations of Many-valued Reasoning,
Trends Log. Stud. Log. Libr. 7,
Kluwer Academic, Dordrecht, 2000.
Google Scholar

[4]

A. Connes and C. Consani,
Schemes over ${\mathbb{F}}_{1}$ and zeta functions,
Compos. Math. 146 (2010), no. 6, 1383–1415.
Google Scholar

[5]

A. Connes and C. Consani,
Geometry of the arithmetic site,
Adv. Math. 291 (2016), 274–329.
Web of ScienceCrossrefGoogle Scholar

[6]

A. Di Nola and B. Gerla,
Algebras of Lukasiewicz’s logic and their semiring reducts,
Idempotent Mathematics and Mathematical Physics,
Contemp. Math. 377,
American Mathematical Society, Providence (2005), 131–144.
Google Scholar

[7]

A. Di Nola and C. Russo,
Łukasiewicz transform and its application to compression and reconstruction of digital images,
Inform. Sci. 177 (2007), no. 6, 1481–1498.
CrossrefGoogle Scholar

[8]

A. Di Nola and C. Russo,
Semiring and semimodule issues in MV-algebras,
Comm. Algebra 41 (2013), no. 3, 1017–1048.
CrossrefGoogle Scholar

[9]

A. Di Nola and C. Russo,
The semiring-theoretic approach to MV-algebras: A survey,
Fuzzy Sets and Systems 281 (2015), 134–154.
Web of ScienceCrossrefGoogle Scholar

[10]

M. Droste and W. Kuich,
Chapter 1: Semirings and formal power series,
Handbook of Weighted Automata,
Monogr. Theoret. Comput. Sci. EATCS Ser.,
Springer, Berlin (2009), 3–28.
Google Scholar

[11]

E. G. Effros, D. E. Handelman and C. L. Shen,
Dimension groups and their affine representations,
Amer. J. Math. 102 (1980), no. 2, 385–407.
CrossrefGoogle Scholar

[12]

G. A. Elliott,
On the classification of inductive limits of sequences of semisimple finite-dimensional algebras,
J. Algebra 38 (1976), no. 1, 29–44.
CrossrefGoogle Scholar

[13]

J. Giansiracusa and N. Giansiracusa,
Equations of tropical varieties,
Duke Math. J. 165 (2016), no. 18, 3379–3433.
Web of ScienceCrossrefGoogle Scholar

[14]

J. S. Golan,
Semirings and Their Applications,
Kluwer Academic, Dordrecht, 1999.
Google Scholar

[15]

K. R. Goodearl,
Von Neumann Regular Rings,
Monogr. Stud. Math. 4,
Pitman, Boston, 1979.
Google Scholar

[16]

S. N. Il’in and Y. Katsov,
On Serre’s problem on projective semimodules over polynomial semirings,
Comm. Algebra 42 (2014), no. 9, 4021–4032.
CrossrefGoogle Scholar

[17]

S. N. Il’in, Y. Katsov and T. G. Nam,
Toward homological structure theory of semimodules: On semirings all of whose cyclic semimodules are projective,
J. Algebra 476 (2017), 238–266.
Web of ScienceCrossrefGoogle Scholar

[18]

Z. Izhakian, M. Johnson and M. Kambites,
Pure dimension and projectivity of tropical polytopes,
Adv. Math. 303 (2016), 1236–1263.
CrossrefWeb of ScienceGoogle Scholar

[19]

Z. Izhakian, M. Knebusch and L. Rowen,
Decompositions of modules lacking zero sums,
Israel J. Math. 225 (2018), no. 2, 503–524.
Web of ScienceCrossrefGoogle Scholar

[20]

Z. Izhakian and L. Rowen,
Supertropical algebra,
Adv. Math. 225 (2010), no. 4, 2222–2286.
Web of ScienceCrossrefGoogle Scholar

[21]

Y. Katsov,
Tensor products and injective envelopes of semimodules over additively regular semirings,
Algebra Colloq. 4 (1997), no. 2, 121–131.
Google Scholar

[22]

Y. Katsov,
Toward homological characterization of semirings: Serre’s conjecture and Bass’s perfectness in a semiring context,
Algebra Universalis 52 (2004), no. 2–3, 197–214.
Google Scholar

[23]

Y. Katsov and T. G. Nam,
Morita equivalence and homological characterization of semirings,
J. Algebra Appl. 10 (2011), no. 3, 445–473.
CrossrefWeb of ScienceGoogle Scholar

[24]

Y. Katsov, T. G. Nam and J. Zumbrägel,
On congruence-semisimple semirings and the ${K}_{0}$-group characterization of ultramatricial algebras over semifields,
J. Algebra 508 (2018), 157–195.
Web of ScienceGoogle Scholar

[25]

B. Keller,
Cluster algebras and derived categories,
Derived Categories in Algebraic Geometry,
EMS Ser. Congr. Rep.,
European Mathematical Society, Zürich (2012), 123–183.
Google Scholar

[26]

T. Y. Lam,
Serre’s Problem on Projective Modules,
Springer Monogr. Math.,
Springer, Berlin, 2006.
Google Scholar

[27]

E. Leichtnam,
A classification of the commutative Banach perfect semi-fields of characteristic 1: Applications,
Math. Ann. 369 (2017), no. 1–2, 653–703.
CrossrefWeb of ScienceGoogle Scholar

[28]

G. L. Litvinov,
The Maslov dequantization, idempotent and tropical mathematics: A very brief introduction,
Idempotent Mathematics and Mathematical Physics,
Contemp. Math. 377,
American Mathematical Society, Providence (2005), 1–17.
Google Scholar

[29]

O. Lorscheid,
The geometry of blueprints: Part I: Algebraic background and scheme theory,
Adv. Math. 229 (2012), no. 3, 1804–1846.
CrossrefWeb of ScienceGoogle Scholar

[30]

S. Mac Lane,
Categories for the Working Mathematician,
Springer, New York, 1971.
Google Scholar

[31]

A. W. Macpherson,
Projective modules over polyhedral semirings,
J. Algebra 518 (2019), 237–271.
CrossrefWeb of ScienceGoogle Scholar

[32]

G. Maze, C. Monico and J. Rosenthal,
Public key cryptography based on semigroup actions,
Adv. Math. Commun. 1 (2007), no. 4, 489–507.
CrossrefGoogle Scholar

[33]

D. Mundici,
Interpretation of AF ${C}^{\ast}$-algebras in Łukasiewicz sentential calculus,
J. Funct. Anal. 65 (1986), no. 1, 15–63.
Google Scholar

[34]

A. Patchkoria,
Projective semimodules over semirings with valuations in nonnegative integers,
Semigroup Forum 79 (2009), no. 3, 451–460.
CrossrefWeb of ScienceGoogle Scholar

[35]

J. Richter-Gebert, B. Sturmfels and T. Theobald,
First steps in tropical geometry,
Idempotent Mathematics and Mathematical Physics,
Contemp. Math. 377,
American Mathematical Society, Providence (2005), 289–317.
Google Scholar

[36]

M. Rørdam, F. Larsen and N. Laustsen,
An Introduction to *K*-theory for ${C}^{*}$-algebras,
London Math. Soc. Stud. Texts 49,
Cambridge University, Cambridge, 2000.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.