Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2015: 0.134
Source Normalized Impact per Paper (SNIP) 2015: 0.686
Impact per Publication (IPP) 2015: 0.296

Open Access
Online
ISSN
1898-9934
See all formats and pricing
In This Section
Volume 14, Issue 1 (Jan 2006)

Issues

Several Differentiation Formulas of Special Functions. Part III

Bo Li
  • Qingdao University of Science and Technology, China
/ Yan Zhang
  • Qingdao University of Science and Technology, China
/ Xiquan Liang
  • Qingdao University of Science and Technology, China
Published Online: 2008-06-13 | DOI: https://doi.org/10.2478/v10037-006-0006-z

Several Differentiation Formulas of Special Functions. Part III

In this article, we give several differentiation formulas of special and composite functions including trigonometric function, inverse trigonometric function, polynomial function and logarithmic function.

  • [1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

  • [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • [3] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005.

  • [4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.

  • [5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.

  • [6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

  • [7] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.

  • [8] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.

  • [9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.

  • [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

  • [11] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.

  • [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

  • [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

  • [14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

  • [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

  • [17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

About the article


Published Online: 2008-06-13

Published in Print: 2006-01-01



Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0006-z. Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in