[3] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[4] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[5] Grzegorz Bancerek. Joining of decorated trees. *Formalized Mathematics*, 4(1):77-82, 1993.Google Scholar

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[7] Czesław Byliński. Binary operations applied to finite sequences. *Formalized Mathematics*, 1(4):643-649, 1990.Google Scholar

[8] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(3):507-513, 1990.Google Scholar

[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar

[10] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[11] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[12] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar

[13] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar

[14] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar

[15] Andrzej Kondracki. The Chinese Remainder Theorem. *Formalized Mathematics*, 6(4):573-577, 1997.Google Scholar

[16] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. *Formalized Mathematics*, 12(2):179-186, 2004.Google Scholar

[17] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887-890, 1990.Google Scholar

[18] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. *Formalized Mathematics*, 1(5):829-832, 1990.Google Scholar

[19] W. J. LeVeque. *Fundamentals of Number Theory.* Dover Publication, New York, 1996.Google Scholar

[20] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. *Formalized Mathematics*, 4(1):83-86, 1993.Google Scholar

[21] Library Committee of the Association of Mizar Users. Binary operations on numbers. *To appear in Formalized Mathematics.*Google Scholar

[22] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. *Formalized Mathematics*, 2(2):213-216, 1991.Google Scholar

[23] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. *Formalized Mathematics*, 9(1):95-110, 2001.Google Scholar

[24] Andrzej Trybulec. Subsets of complex numbers. *To appear in Formalized Mathematics.*Google Scholar

[25] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar

[26] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar

[27] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(4):341-347, 2003.Google Scholar

[28] Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(3):501-505, 1990.Google Scholar

[29] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. *Formalized Mathematics*, 1(3):569-573, 1990.Google Scholar

[30] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar

[31] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

[1] M. Aigner and G. M. Ziegler. *Proofs from THE BOOK.* Springer-Verlag, Berlin Heidelberg New York, 2004.Google Scholar

[2] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar

## Comments (0)