Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 14, Issue 3 (Jan 2006)

Issues

Simple Continued Fractions and Their Convergents

Bo Li
  • Qingdao University of Science and Technology, China
/ Yan Zhang
  • Qingdao University of Science and Technology, China
/ Artur Korniłowicz
  • Institute of Computer Science, University of Białystok, Sosnowa 64, 15-887 Białystok, Poland
Published Online: 2008-06-09 | DOI: https://doi.org/10.2478/v10037-006-0009-9

Simple Continued Fractions and Their Convergents

The article introduces simple continued fractions. They are defined as an infinite sequence of integers. The characterization of rational numbers in terms of simple continued fractions is shown. We also give definitions of convergents of continued fractions, and several important properties of simple continued fractions and their convergents.

  • [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

  • [8] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.Google Scholar

  • [9] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.Google Scholar

  • [10] Jaroław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Google Scholar

  • [11] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [12] Robert M. Solovay. Fibonacci numbers. Formalized Mathematics, 10(2):81-83, 2002.Google Scholar

  • [13] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [14] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Google Scholar

  • [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Google Scholar

  • [17] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

About the article


Published Online: 2008-06-09

Published in Print: 2006-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0009-9.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in