Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 14, Issue 3 (Jan 2006)

Issues

Chordal Graphs

Broderick Arneson
  • University of Alberta, Edmonton, Canada
/ Piotr Rudnicki
  • University of Alberta, Edmonton, Canada
Published Online: 2008-06-09 | DOI: https://doi.org/10.2478/v10037-006-0010-3

Chordal Graphs

We are formalizing [9, pp. 81-84] where chordal graphs are defined and their basic characterization is given. This formalization is a part of the M.Sc. work of the first author under supervision of the second author.

  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [9] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.Google Scholar

  • [10] Gilbert Lee. Trees and Graph Components. Formalized Mathematics, 13(2):271-277, 2005.Google Scholar

  • [11] Gilbert Lee. Walks in Graphs. Formalized Mathematics, 13(2):253-269, 2005.Google Scholar

  • [12] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics, 13(2):235-252, 2005.Google Scholar

  • [13] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.Google Scholar

  • [14] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Google Scholar

  • [15] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Google Scholar

  • [17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.Google Scholar

  • [18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.Google Scholar

  • [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

About the article


Published Online: 2008-06-09

Published in Print: 2006-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0010-3.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in