Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 14, Issue 3 (Jan 2006)

Issues

Several Differentiation Formulas of Special Functions. Part IV

Bo Li
  • Qingdao University of Science and Technology, China
/ Peng Wang
  • Qingdao University of Science and Technology, China
Published Online: 2008-06-09 | DOI: https://doi.org/10.2478/v10037-006-0013-0

Several Differentiation Formulas of Special Functions. Part IV

In this article, we give several differentiation formulas of special and composite functions including trigonometric function, polynomial function and logarithmic function.

  • [4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.Google Scholar

  • [5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.Google Scholar

  • [6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Google Scholar

  • [7] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.Google Scholar

  • [9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.Google Scholar

  • [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Google Scholar

  • [11] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.Google Scholar

  • [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Google Scholar

  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.Google Scholar

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

About the article


Published Online: 2008-06-09

Published in Print: 2006-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0013-0.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in