[1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[3] Czesław Byliński. Binary operations. *Formalized Mathematics*, 1(1):175-180, 1990.Google Scholar

[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar

[5] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[6] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[7] Katarzyna Jankowska. Matrices. Abelian group of matrices. *Formalized Mathematics*, 2(4):475-480, 1991.Google Scholar

[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335-342, 1990.Google Scholar

[9] Robert Milewski. The evaluation of polynomials. *Formalized Mathematics*, 9(2):391-395, 2001.Google Scholar

[10] Robert Milewski. Fundamental theorem of algebra. *Formalized Mathematics*, 9(3):461-470, 2001.Google Scholar

[11] Robert Milewski. The ring of polynomials. *Formalized Mathematics*, 9(2):339-346, 2001.Google Scholar

[12] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):3-11, 1991.Google Scholar

[13] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. *Formalized Mathematics*, 1(5):833-840, 1990.Google Scholar

[14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. *Formalized Mathematics*, 2(1):97-104, 1991.Google Scholar

[15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. *Formalized Mathematics*, 4(1):83-86, 1993.Google Scholar

[16] Jan Popiołek. Real normed space. *Formalized Mathematics*, 2(1):111-115, 1991.Google Scholar

[17] Konrad Raczkowski. Integer and rational exponents. *Formalized Mathematics*, 2(1):125-130, 1991.Google Scholar

[18] Christoph Schwarzweller. The binomial theorem for algebraic structures. *Formalized Mathematics*, 9(3):559-564, 2001.Google Scholar

[19] Andrzej Trybulec. Subsets of complex numbers. *To appear in Formalized Mathematics.*Google Scholar

[20] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar

[21] Andrzej Trybulec. Tuples, projections and Cartesian products. *Formalized Mathematics*, 1(1):97-105, 1990.Google Scholar

[22] Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(3):501-505, 1990.Google Scholar

[23] Wojciech A. Trybulec. Groups. *Formalized Mathematics*, 1(5):821-827, 1990.Google Scholar

[24] Wojciech A. Trybulec. Pigeon hole principle. *Formalized Mathematics*, 1(3):575-579, 1990.Google Scholar

[25] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291-296, 1990.Google Scholar

[26] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[27] J. von zur Gathen and J. Gerhard *Modern Computer Algebra.* Cambridge University Press, 1999.Google Scholar

[28] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar

[29] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. *Formalized Mathematics*, 4(1):1-8, 1993.Google Scholar

## Comments (0)