Jump to ContentJump to Main Navigation
Show Summary Details

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2015: 0.134
Source Normalized Impact per Paper (SNIP) 2015: 0.686
Impact per Publication (IPP) 2015: 0.296

Open Access
Online
ISSN
1898-9934
See all formats and pricing
Volume 14, Issue 4 (Jan 2006)

Issues

Multiplication of Polynomials using Discrete Fourier Transformation

Krzysztof Treyderowski
  • Department of Computer Science, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
/ Christoph Schwarzweller
  • Department of Computer Science, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
Published Online: 2008-06-13 | DOI: https://doi.org/10.2478/v10037-006-0015-y

Multiplication of Polynomials using Discrete Fourier Transformation

In this article we define the Discrete Fourier Transformation for univariate polynomials and show that multiplication of polynomials can be carried out by two Fourier Transformations with a vector multiplication in-between. Our proof follows the standard one found in the literature and uses Vandermonde matrices, see e.g. [27].

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

  • [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

  • [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

  • [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

  • [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • [7] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.

  • [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

  • [9] Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.

  • [10] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001.

  • [11] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.

  • [12] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.

  • [13] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.

  • [14] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.

  • [15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.

  • [16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.

  • [17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.

  • [18] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.

  • [19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

  • [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

  • [21] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

  • [22] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

  • [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

  • [24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.

  • [25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

  • [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

  • [27] J. von zur Gathen and J. Gerhard Modern Computer Algebra. Cambridge University Press, 1999.

  • [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

  • [29] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

About the article


Published Online: 2008-06-13

Published in Print: 2006-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0015-y. Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in