Jump to ContentJump to Main Navigation
Show Summary Details

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2015: 0.134
Source Normalized Impact per Paper (SNIP) 2015: 0.686
Impact per Publication (IPP) 2015: 0.296

Open Access
Online
ISSN
1898-9934
See all formats and pricing
Volume 14, Issue 4 (Jan 2006)

Issues

Some Special Matrices of Real Elements and Their Properties

Xiquan Liang
  • Qingdao University of Science and Technology, China
/ Fuguo Ge
  • Qingdao University of Science and Technology, China
/ Xiaopeng Yue
  • Qingdao University of Science and Technology, China
Published Online: 2008-06-13 | DOI: https://doi.org/10.2478/v10037-006-0016-x

Some Special Matrices of Real Elements and Their Properties

This article describes definitions of positive matrix, negative matrix, nonpositive matrix, nonnegative matrix, nonzero matrix, module matrix of real elements and their main properties, and we also give the basic inequalities in matrices of real elements.

  • [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

  • [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.

  • [3] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • [5] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.

  • [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

  • [7] Yatsuka Nakamura, Nobuyuki Tamura, and Wenpai Chang. A theory of matrices of real elements. Formalized Mathematics, 14(1):21-28, 2006.

  • [8] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

  • [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

  • [10] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

  • [11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

  • [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

About the article


Published Online: 2008-06-13

Published in Print: 2006-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0016-x. Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in