[1] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. *Formalized Mathematics*, 2(1):163-171, 1991.Google Scholar

[4] Józef Białas. Series of positive real numbers. Measure theory. *Formalized Mathematics*, 2(1):173-183, 1991.Google Scholar

[5] Józef Białas. The σ-additive measure theory. *Formalized Mathematics*, 2(2):263-270, 1991.Google Scholar

[6] Józef Białas. Some properties of the intervals. *Formalized Mathematics*, 5(1):21-26, 1996.Google Scholar

[7] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(3):507-513, 1990.Google Scholar

[8] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[9] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[10] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[11] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar

[12] Noboru Endou and Yasunari Shidama. Integral of measurable function. *Formalized Mathematics*, 14(2):53-70, 2006.Google Scholar

[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. *Formalized Mathematics*, 9(3):491-494, 2001.Google Scholar

[14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495-500, 2001.Google Scholar

[15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. *Formalized Mathematics*, 9(3):525-529, 2001.Google Scholar

[16] P. R. Halmos. *Measure Theory.* Springer-Verlag, 1987.Google Scholar

[17] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar

[18] Andrzej Kondracki. Basic properties of rational numbers. *Formalized Mathematics*, 1(5):841-845, 1990.Google Scholar

[19] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar

[20] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. *Formalized Mathematics*, 3(2):279-288, 1992.Google Scholar

[21] Andrzej Nedzusiak. σ-fields and probability. *Formalized Mathematics*, 1(2):401-407, 1990.Google Scholar

[22] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(1):147-152, 1990.Google Scholar

[23] Andrzej Trybulec. Subsets of complex numbers. *To appear in Formalized Mathematics.*Google Scholar

[24] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115-122, 1990.Google Scholar

[25] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar

[26] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[27] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

## Comments (0)