Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 14, Issue 4 (Jan 2006)

Issues

Integral of Real-Valued Measurable Function1

Yasunari Shidama / Noboru Endou
Published Online: 2008-06-13 | DOI: https://doi.org/10.2478/v10037-006-0018-8

Integral of Real-Valued Measurable Function1

Based on [16], authors formalized the integral of an extended real valued measurable function in [12] before. However, the integral argued in [12] cannot be applied to real-valued functions unconditionally. Therefore, in this article we have formalized the integral of a real-value function.

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.Google Scholar

  • [4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.Google Scholar

  • [5] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.Google Scholar

  • [6] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.Google Scholar

  • [7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Google Scholar

  • [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [12] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.Google Scholar

  • [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.Google Scholar

  • [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.Google Scholar

  • [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.Google Scholar

  • [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.Google Scholar

  • [17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Google Scholar

  • [18] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.Google Scholar

  • [19] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Google Scholar

  • [20] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.Google Scholar

  • [21] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.Google Scholar

  • [22] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Google Scholar

  • [23] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [24] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Google Scholar

  • [25] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

About the article


Published Online: 2008-06-13

Published in Print: 2006-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0018-8.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hiroyuki Okazaki and Yasunari Shidama
Formalized Mathematics, 2010, Volume 18, Number 4
[2]
Yasushige Watase, Noboru Endou, and Yasunari Shidama
Formalized Mathematics, 2010, Volume 18, Number 3
[3]
Keiko Narita, Noboru Endou, and Yasunari Shidama
Formalized Mathematics, 2009, Volume 17, Number 2
[4]
Yasushige Watase, Noboru Endou, and Yasunari Shidama
Formalized Mathematics, 2008, Volume 16, Number 4
[5]
Keiko Narita, Noboru Endou, and Yasunari Shidama
Formalized Mathematics, 2009, Volume 17, Number 2
[6]
Hiroyuki Okazaki and Yasunari Shidama
Formalized Mathematics, 2009, Volume 17, Number 2
[7]
Keiko Narita, Noboru Endou, and Yasunari Shidama
Formalized Mathematics, 2008, Volume 16, Number 4

Comments (0)

Please log in or register to comment.
Log in