## Model Checking. Part I

This text includes definitions of the Kripke structure, CTL (Computation Tree Logic), and verification of the basic algorithm for Model Checking based on CTL in [10].

Show Summary Details# Model Checking. Part I

#### Open Access

## Model Checking. Part I

## About the article

## Citing Articles

*Formalized Mathematics*, 2008, Volume 16, Number 3*Formalized Mathematics*, 2008, Volume 16, Number 4

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Kazuhisa Ishida

This text includes definitions of the Kripke structure, CTL (Computation Tree Logic), and verification of the basic algorithm for Model Checking based on CTL in [10].

[1] Grzegorz Bancerek. A model of ZF set theory language.

*Formalized Mathematics*, 1(1):131-145, 1990.Google Scholar[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.

*Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions.

*Formalized Mathematics*, 5(4):485-492, 1996.Google Scholar[4] Czesław Byliński. Basic functions and operations on functions.

*Formalized Mathematics*, 1(1):245-254, 1990.Google Scholar[5] Czesław Byliński. Binary operations.

*Formalized Mathematics*, 1(1):175-180, 1990.Google Scholar[6] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar[7] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar[8] Czesław Byliński. Partial functions.

*Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar[9] Czesław Byliński. Some basic properties of sets.

*Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar[10] Grumberg, O. and Clarke, E. M. and D. Peled.

*Model Checking.*MIT Press, 2000.Google Scholar[11] Library Committee of the Association of Mizar Users. Binary operations on numbers.

*To appear in Formalized Mathematics.*Google Scholar[12] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem.

*Formalized Mathematics*, 6(3):335-338, 1997.Google Scholar[13] Piotr Rudnicki and Andrzej Trybulec. Fixpoints in complete lattices.

*Formalized Mathematics*, 6(1):109-115, 1997.Google Scholar[14] Andrzej Trybulec. Subsets of complex numbers.

*To appear in Formalized Mathematics.*Google Scholar[15] Andrzej Trybulec. Binary operations applied to functions.

*Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar[16] Andrzej Trybulec. Tarski Grothendieck set theory.

*Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar[17] Wojciech A. Trybulec. Partially ordered sets.

*Formalized Mathematics*, 1(2):313-319, 1990.Google Scholar[18] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[19] Edmund Woronowicz. Many-argument relations.

*Formalized Mathematics*, 1(4):733-737, 1990.Google Scholar[20] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar[21] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

**Published Online**: 2008-06-13

**Published in Print**: 2006-01-01

**Citation Information: **Formalized Mathematics, Volume 14, Issue 4, Pages 171–186, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0021-0.

This content is open access.

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Kazuhisa Ishida

[2]

Kazuhisa Ishida and Yasunari Shidama

## Comments (0)