Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 14, Issue 4 (Jan 2006)

Issues

Baire's Category Theorem and Some Spaces Generated from Real Normed Space1

Noboru Endou / Yasunari Shidama / Katsumasa Okamura
Published Online: 2008-06-13 | DOI: https://doi.org/10.2478/v10037-006-0024-x

Baire's Category Theorem and Some Spaces Generated from Real Normed Space1

As application of complete metric space, we proved a Baire's category theorem. Then we defined some spaces generated from real normed space and discussed each of them. In the second section, we showed the equivalence of convergence and the continuity of a function. In other sections, we showed some topological properties of two spaces, which are topological space and linear topological space generated from real normed space.

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169-176, 1997.Google Scholar

  • [3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.Google Scholar

  • [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [8] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.Google Scholar

  • [9] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Google Scholar

  • [10] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.Google Scholar

  • [11] Stanisława Kanas and Adam Lecko. Sequences in metric spaces. Formalized Mathematics, 2(5):657-661, 1991.Google Scholar

  • [12] Stanisława Kanas and Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Google Scholar

  • [13] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1-16, 1992.Google Scholar

  • [14] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.Google Scholar

  • [15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Google Scholar

  • [16] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.Google Scholar

  • [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Google Scholar

  • [18] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.Google Scholar

  • [19] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.Google Scholar

  • [20] Bartłomiej Skorulski. The sequential closure operator in sequential and Frechet spaces. Formalized Mathematics, 8(1):47-54, 1999.Google Scholar

  • [21] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [22] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Google Scholar

  • [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [24] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289-294, 1997.Google Scholar

  • [25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

About the article


Published Online: 2008-06-13

Published in Print: 2006-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0024-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hideki Sakurai, Hisayoshi Kunimune, and Yasunari Shidama
Formalized Mathematics, 2008, Volume 16, Number 1
[2]
Hideki Sakurai, Hisayoshi Kunimune, and Yasunari Shidama
Formalized Mathematics, 2008, Volume 16, Number 4

Comments (0)

Please log in or register to comment.
Log in