Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 14, Issue 4 (Jan 2006)

Issues

On the Representation of Natural Numbers in Positional Numeral Systems1

Adam Naumowicz
  • Institute of Computer Science, University of Białystok, Akademicka 2, 15-267 Białystok, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-06-13 | DOI: https://doi.org/10.2478/v10037-006-0025-9

On the Representation of Natural Numbers in Positional Numeral Systems1

In this paper we show that every natural number can be uniquely represented as a base-b numeral. The formalization is based on the proof presented in [11]. We also prove selected divisibility criteria in the base-10 numeral system.

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Google Scholar

  • [5] Rafał Kwiatek. Factorial and Newton coeffcients. Formalized Mathematics, 1(5):887-890, 1990.Google Scholar

  • [6] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.Google Scholar

  • [7] Karol Pak. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.Google Scholar

  • [8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.Google Scholar

  • [9] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.Google Scholar

  • [10] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.Google Scholar

  • [11] Wacław Sierpiński. Elementary Theory of Numbers. PWN, Warsaw, 1964.Google Scholar

  • [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [14] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Google Scholar

  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [16] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.Google Scholar

  • [17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

About the article


Published Online: 2008-06-13

Published in Print: 2006-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0025-9.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in