Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 14, Issue 4 (Jan 2006)

Issues

The Relevance of Measure and Probability, and Definition of Completeness of Probability

Bo Zhang
  • Shinshu University, Nagano, Japan
/ Hiroshi Yamazaki
  • Shinshu University, Nagano, Japan
/ Yatsuka Nakamura
  • Shinshu University, Nagano, Japan
Published Online: 2008-06-13 | DOI: https://doi.org/10.2478/v10037-006-0026-8

The Relevance of Measure and Probability, and Definition of Completeness of Probability

In this article, we first discuss the relation between measure defined using extended real numbers and probability defined using real numbers. Further, we define completeness of probability, and its completion method, and also show that they coincide with those of measure.

  • [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [2] Grzegorz Bancerek. Köonig's theorem. Formalized Mathematics, 1(3):589-593, 1990.Google Scholar

  • [3] Józef Białas. Completeness of the σ-additive measure. Measure theory. Formalized Mathematics, 2(5):689-693, 1991.Google Scholar

  • [4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.Google Scholar

  • [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.Google Scholar

  • [6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.Google Scholar

  • [7] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.Google Scholar

  • [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [11] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in ε2. Formalized Mathematics, 6(3):427-440, 1997.Google Scholar

  • [12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.Google Scholar

  • [13] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.Google Scholar

  • [14] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.Google Scholar

  • [15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Google Scholar

  • [16] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.Google Scholar

  • [17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics, 13(3):375-381, 2005.Google Scholar

  • [23] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005.Google Scholar

About the article


Published Online: 2008-06-13

Published in Print: 2006-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-006-0026-8.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in