Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 15, Issue 1 (Jan 2007)

Issues

Several Classes of BCI-algebras and their Properties

Yuzhong Ding
Published Online: 2008-06-13 | DOI: https://doi.org/10.2478/v10037-007-0001-z

Several Classes of BCI-algebras and their Properties

I have formalized the BCI-algebras closely following the book [6], sections 1.1 to 1.3, 1.6, 2.1 to 2.3, and 2.7. In this article the general theory of BCI-algebras and several classes of BCI-algebras are given.

MML identifier: BCIALG 1, version: 7.8.04 4.81.962

  • [1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.Google Scholar

  • [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Google Scholar

  • [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.Google Scholar

  • [6] Jie Meng and YoungLin Liu. An Introduction to BCI-algebras. Shaanxi Scientific and Technological Press, 2001.Google Scholar

  • [7] Michał Muzalewski. Midpoint algebras. Formalized Mathematics, 1(3):483-488, 1990.Google Scholar

  • [8] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.Google Scholar

  • [9] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [11] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Google Scholar

  • [12] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Google Scholar

  • [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

About the article


Published Online: 2008-06-13

Published in Print: 2007-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-007-0001-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tao Sun, Dahai Hu, and Xiquan Liang
Formalized Mathematics, 2007, Volume 15, Number 4
[2]
Yuzhong Ding and Zhiyong Pang
Formalized Mathematics, 2007, Volume 15, Number 4
[3]
Yuzhong Ding, Fuguo Ge, and Chenglong Wu
Formalized Mathematics, 2008, Volume 16, Number 4
[4]
Chenglong Wu and Yuzhong Ding
Formalized Mathematics, 2008, Volume 16, Number 2
[5]
Tao Sun, Weibo Pan, Chenglong Wu, and Xiquan Liang
Formalized Mathematics, 2008, Volume 16, Number 3
[6]
Tao Sun, Junjie Zhao, and Xiquan Liang
Formalized Mathematics, 2008, Volume 16, Number 1

Comments (0)

Please log in or register to comment.
Log in