[7] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[8] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[9] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar

[10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in ε^{2}. *Formalized Mathematics*, 6(3):427-440, 1997.Google Scholar

[11] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. *Formalized Mathematics*, 8(1):93-102, 1999.Google Scholar

[12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. *Formalized Mathematics*, 9(2):281-284, 2001.Google Scholar

[13] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar

[14] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Formalized Mathematics*, 1(3):477-481, 1990.Google Scholar

[15] Jarosław Kotowicz. Convergent sequences and the limit of sequences. *Formalized Mathematics*, 1(2):273-275, 1990.Google Scholar

[16] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. *Formalized Mathematics*, 1(4):703-709, 1990.Google Scholar

[17] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar

[18] Beata Perkowska. Functional sequence from a domain to a domain. *Formalized Mathematics*, 3(1):17-21, 1992.Google Scholar

[19] Konrad Raczkowski and Paweł Sadowski. Real function continuity. *Formalized Mathematics*, 1(4):787-791, 1990.Google Scholar

[20] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. *Formalized Mathematics*, 1(4):797-801, 1990.Google Scholar

[21] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Formalized Mathematics*, 1(4):777-780, 1990.Google Scholar

[22] Yasunari Shidama. The Taylor expansions. *Formalized Mathematics*, 12(2):195-200, 2004.Google Scholar

[23] Andrzej Trybulec. Subsets of complex numbers. *To appear in Formalized Mathematics.*Google Scholar

[24] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar

[25] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[26] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

[27] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. *Formalized Mathematics*, 7(2):255-263, 1998.Google Scholar

[1] Tom M. Apostol. *Mathematical Analysis.* Addison-Wesley, 1969.Google Scholar

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[3] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[5] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(3):507-513, 1990.Google Scholar

[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar

## Comments (0)