## Several Differentiation Formulas of Special Functions. Part V

In this article, we give several differentiation formulas of special and composite functions including trigonometric, polynomial and logarithmic functions.

Show Summary Details# Several Differentiation Formulas of Special Functions. Part V

#### Open Access

## Several Differentiation Formulas of Special Functions. Part V

## About the article

## Citing Articles

*Formalized Mathematics*, 2011, Volume 19, Number 1*Formalized Mathematics*, 2010, Volume 18, Number 2*Formalized Mathematics*, 2009, Volume 17, Number 4*Formalized Mathematics*, 2007, Volume 15, Number 4*Formalized Mathematics*, 2009, Volume 17, Number 1*Formalized Mathematics*, 2009, Volume 17, Number 2*Formalized Mathematics*, 2008, Volume 16, Number 2*Formalized Mathematics*, 2008, Volume 16, Number 4*Formalized Mathematics*, 2009, Volume 17, Number 1*Formalized Mathematics*, 2008, Volume 16, Number 1

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Peng Wang / Bo Li

In this article, we give several differentiation formulas of special and composite functions including trigonometric, polynomial and logarithmic functions.

[4] Jarosław Kotowicz. Partial functions from a domain to a domain.

*Formalized Mathematics*, 1(4):697-702, 1990.Google Scholar[5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers.

*Formalized Mathematics*, 1(4):703-709, 1990.Google Scholar[6] Jarosław Kotowicz. Real sequences and basic operations on them.

*Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar[7] Rafał Kwiatek. Factorial and Newton coefficients.

*Formalized Mathematics*, 1(5):887-890, 1990.Google Scholar[8] Konrad Raczkowski. Integer and rational exponents.

*Formalized Mathematics*, 2(1):125-130, 1991.Google Scholar[9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability.

*Formalized Mathematics*, 1(4):797-801, 1990.Google Scholar[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers.

*Formalized Mathematics*, 1(4):777-780, 1990.Google Scholar[11] Yasunari Shidama. The Taylor expansions.

*Formalized Mathematics*, 12(2):195-200, 2004.Google Scholar[12] Andrzej Trybulec. Subsets of complex numbers.

*To appear in Formalized Mathematics*.Google Scholar[13] Andrzej Trybulec. Tarski Grothendieck set theory.

*Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers.

*Formalized Mathematics*, 1(3):445-449, 1990.Google Scholar[15] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[16] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio.

*Formalized Mathematics*, 7(2):255-263, 1998.Google Scholar[1] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar[2] Czesław Byliński. Partial functions.

*Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar[3] Krzysztof Hryniewiecki. Basic properties of real numbers.

*Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar

**Published Online**: 2008-06-09

**Published in Print**: 2007-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-007-0009-4.

This content is open access.

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Xiquan Liang, Ling Tang, and Xichun Jiang

[2]

Bo Li and Na Ma

[3]

Bo Li, Dailu Li, Yanhong Men, and Xiquan Liang

[4]

Bo Li and Pan Wang

[5]

Bo Li, Yanping Zhuang, Yanhong Men, and Xiquan Liang

[6]

Bo Li and Yanhong Men

[7]

Bing Xie, Xiquan Liang, and Fuguo Ge

[8]

Fuguo Ge and Bing Xie

[9]

Bo Li, Yanping Zhuang, Bing Xie, and Pan Wang

[10]

Bo Li, Yanping Zhuang, and Xiquan Liang

## Comments (0)