## Several Differentiation Formulas of Special Functions. Part V

In this article, we give several differentiation formulas of special and composite functions including trigonometric, polynomial and logarithmic functions.

Show Summary Details# Several Differentiation Formulas of Special Functions. Part V

#### Open Access

## Several Differentiation Formulas of Special Functions. Part V

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Peng Wang / Bo Li

In this article, we give several differentiation formulas of special and composite functions including trigonometric, polynomial and logarithmic functions.

[4] Jarosław Kotowicz. Partial functions from a domain to a domain.

*Formalized Mathematics*, 1(4):697-702, 1990.Google Scholar[5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers.

*Formalized Mathematics*, 1(4):703-709, 1990.Google Scholar[6] Jarosław Kotowicz. Real sequences and basic operations on them.

*Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar[7] Rafał Kwiatek. Factorial and Newton coefficients.

*Formalized Mathematics*, 1(5):887-890, 1990.Google Scholar[8] Konrad Raczkowski. Integer and rational exponents.

*Formalized Mathematics*, 2(1):125-130, 1991.Google Scholar[9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability.

*Formalized Mathematics*, 1(4):797-801, 1990.Google Scholar[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers.

*Formalized Mathematics*, 1(4):777-780, 1990.Google Scholar[11] Yasunari Shidama. The Taylor expansions.

*Formalized Mathematics*, 12(2):195-200, 2004.Google Scholar[12] Andrzej Trybulec. Subsets of complex numbers.

*To appear in Formalized Mathematics*.Google Scholar[13] Andrzej Trybulec. Tarski Grothendieck set theory.

*Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers.

*Formalized Mathematics*, 1(3):445-449, 1990.Google Scholar[15] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[16] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio.

*Formalized Mathematics*, 7(2):255-263, 1998.Google Scholar[1] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar[2] Czesław Byliński. Partial functions.

*Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar[3] Krzysztof Hryniewiecki. Basic properties of real numbers.

*Formalized Mathematics*, 1(1):35-40, 1990.Google Scholar

**Published Online**: 2008-06-09

**Published in Print**: 2007-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-007-0009-4.

This content is open access.

## Comments (0)