## The Product Space of Real Normed Spaces and its Properties

In this article, we define the product space of real linear spaces and real normed spaces. We also describe properties of these spaces.

Show Summary Details# The Product Space of Real Normed Spaces and its Properties

#### Open Access

## The Product Space of Real Normed Spaces and its Properties

## About the article

## Citing Articles

*Formalized Mathematics*, 2012, Volume 20, Number 1*Formalized Mathematics*, 2011, Volume 19, Number 1

In This Section# Formalized Mathematics

### (a computer assisted approach)

In This Section

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2015: 0.134

Source Normalized Impact per Paper (SNIP) 2015: 0.686

Impact per Publication (IPP) 2015: 0.296

Noboru Endou / Yasunari Shidama / Keiichi Miyajima

In this article, we define the product space of real linear spaces and real normed spaces. We also describe properties of these spaces.

[1] Grzegorz Bancerek. König's theorem.

*Formalized Mathematics*, 1(3):589-593, 1990.[2] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(1):91-96, 1990.[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.

*Formalized Mathematics*, 1(1):107-114, 1990.[4] Czesław Byliński. Binary operations.

*Formalized Mathematics*, 1(1):175-180, 1990.[5] Czesław Byliński. The complex numbers.

*Formalized Mathematics*, 1(3):507-513, 1990.[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets.

*Formalized Mathematics*, 1(3):529-536, 1990.[7] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(1):55-65, 1990.[8] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(1):153-164, 1990.[9] Czesław Byliński. Some basic properties of sets.

*Formalized Mathematics*, 1(1):47-53, 1990.[10] Czesław Byliński. The sum and product of finite sequences of real numbers.

*Formalized Mathematics*, 1(4):661-668, 1990.[11] Agata Darmochwał. The Euclidean space.

*Formalized Mathematics*, 2(4):599-603, 1991.[12] Jarosław Kotowicz. Convergent sequences and the limit of sequences.

*Formalized Mathematics*, 1(2):273-275, 1990.[13] Jarosław Kotowicz. Real sequences and basic operations on them.

*Formalized Mathematics*, 1(2):269-272, 1990.[14] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces.

*Formalized Mathematics*, 1(2):335-342, 1990.[15] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces.

*Formalized Mathematics*, 3(2):235-240, 1992.[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

*Formalized Mathematics*, 1(1):223-230, 1990.[17] Jan Popiołek. Real normed space.

*Formalized Mathematics*, 2(1):111-115, 1991.[18] Yasunari Shidama. Banach space of bounded linear operators.

*Formalized Mathematics*, 12(1):39-48, 2004.[19] Andrzej Trybulec. Subsets of complex numbers.

*To appear in Formalized Mathematics*.[20] Andrzej Trybulec. Tarski Grothendieck set theory.

*Formalized Mathematics*, 1(1):9-11, 1990.[21] Wojciech A. Trybulec. Vectors in real linear space.

*Formalized Mathematics*, 1(2):291-296, 1990.[22] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.[23] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(1):73-83, 1990.

**Published Online**: 2008-06-09

**Published in Print**: 2007-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-007-0010-y. Export Citation

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Yasunari Shidama

[2]

Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama

## Comments (0)