Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
See all formats and pricing
More options …
Volume 15, Issue 3


Mizar Analysis of Algorithms: Preliminaries

Grzegorz Bancerek
Published Online: 2008-06-09 | DOI: https://doi.org/10.2478/v10037-007-0011-x

Mizar Analysis of Algorithms: Preliminaries

Algorithms and its parts - instructions - are formalized as elements of if-while algebras. An if-while algebra is a (1-sorted) universal algebra which has 4 operations: a constant - the empty instruction, a binary catenation of instructions, a ternary conditional instruction, and a binary while instruction. An execution function is defined on pairs (s, I), where s is a state (an element of certain set of states) and I is an instruction, and results in states. The execution function obeys control structures using the set of distinguished true states, i.e. a condition instruction is executed and the continuation of execution depends on if the resulting state is in true states or not. Termination is also defined for pairs (s, I) and depends on the execution function. The existence of execution function determined on elementary instructions and its uniqueness for terminating instructions are shown.

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Google Scholar

  • [2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.Google Scholar

  • [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Google Scholar

  • [4] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.Google Scholar

  • [5] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Google Scholar

  • [6] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Google Scholar

  • [7] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.Google Scholar

  • [8] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.Google Scholar

  • [9] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.Google Scholar

  • [10] Grzegorz Bancerek. Minimal signature for partial algebra. Formalized Mathematics, 5(3):405-414, 1996.Google Scholar

  • [11] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [12] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Mathematics, 5(3):367-380, 1996.Google Scholar

  • [13] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.Google Scholar

  • [14] Grzegorz Bancerek and Piotr Rudnicki. The set of primitive recursive functions. Formalized Mathematics, 9(4):705-720, 2001.Google Scholar

  • [15] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.Google Scholar

  • [16] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.Google Scholar

  • [17] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.Google Scholar

  • [18] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Formalized Mathematics, 4(1):23-27, 1993.Google Scholar

  • [19] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.Google Scholar

  • [20] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Google Scholar

  • [21] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [22] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [23] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Google Scholar

  • [24] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.Google Scholar

  • [25] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Google Scholar

  • [26] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Google Scholar

  • [27] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.Google Scholar

  • [28] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.Google Scholar

  • [29] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Google Scholar

  • [30] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.Google Scholar

  • [31] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.Google Scholar

  • [32] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. Formalized Mathematics, 4(1):109-113, 1993.Google Scholar

  • [33] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.Google Scholar

  • [34] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Google Scholar

  • [35] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.Google Scholar

  • [36] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Google Scholar

  • [37] Beata Perkowska. Free universal algebra construction. Formalized Mathematics, 4(1):115-120, 1993.Google Scholar

  • [38] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67-74, 1996.Google Scholar

  • [39] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [40] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Google Scholar

  • [41] Andrzej Trybulec. Function domains and Fránkel operator. Formalized Mathematics, 1(3):495-500, 1990.Google Scholar

  • [42] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [43] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.Google Scholar

  • [44] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.Google Scholar

  • [45] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Google Scholar

  • [46] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.Google Scholar

  • [47] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [48] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.Google Scholar

  • [49] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [50] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

About the article

Published Online: 2008-06-09

Published in Print: 2007-01-01

Citation Information: Formalized Mathematics, Volume 15, Issue 3, Pages 87–110, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-007-0011-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Grzegorz Bancerek
Formalized Mathematics, 2011, Volume 19, Number 2
Grzegorz Bancerek
Formalized Mathematics, 2008, Volume 16, Number 2

Comments (0)

Please log in or register to comment.
Log in