[1] Grzegorz Bancerek. Cardinal numbers. *Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar

[2] Grzegorz Bancerek. Curried and uncurried functions. *Formalized Mathematics*, 1(3):537-541, 1990.Google Scholar

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41-46, 1990.Google Scholar

[4] Grzegorz Bancerek. Introduction to trees. *Formalized Mathematics*, 1(2):421-427, 1990.Google Scholar

[5] Grzegorz Bancerek. König's theorem. *Formalized Mathematics*, 1(3):589-593, 1990.Google Scholar

[6] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar

[7] Grzegorz Bancerek. König's lemma. *Formalized Mathematics*, 2(3):397-402, 1991.Google Scholar

[8] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. *Formalized Mathematics*, 3(2):195-204, 1992.Google Scholar

[9] Grzegorz Bancerek. Joining of decorated trees. *Formalized Mathematics*, 4(1):77-82, 1993.Google Scholar

[10] Grzegorz Bancerek. Minimal signature for partial algebra. *Formalized Mathematics*, 5(3):405-414, 1996.Google Scholar

[11] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar

[12] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. *Formalized Mathematics*, 5(3):367-380, 1996.Google Scholar

[13] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. *Formalized Mathematics*, 4(1):91-101, 1993.Google Scholar

[14] Grzegorz Bancerek and Piotr Rudnicki. The set of primitive recursive functions. *Formalized Mathematics*, 9(4):705-720, 2001.Google Scholar

[15] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. *Formalized Mathematics*, 5(4):485-492, 1996.Google Scholar

[16] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. *Formalized Mathematics*, 2(1):163-171, 1991.Google Scholar

[17] Józef Białas. Series of positive real numbers. Measure theory. *Formalized Mathematics*, 2(1):173-183, 1991.Google Scholar

[18] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. *Formalized Mathematics*, 4(1):23-27, 1993.Google Scholar

[19] Czesław Byliński. Basic functions and operations on functions. *Formalized Mathematics*, 1(1):245-254, 1990.Google Scholar

[20] Czesław Byliński. Binary operations. *Formalized Mathematics*, 1(1):175-180, 1990.Google Scholar

[21] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar

[22] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar

[23] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar

[24] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521-527, 1990.Google Scholar

[25] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar

[26] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar

[27] Czesław Byliński. Subcategories and products of categories. *Formalized Mathematics*, 1(4):725-732, 1990.Google Scholar

[28] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. *Formalized Mathematics*, 2(5):683-687, 1991.Google Scholar

[29] Agata Darmochwał. Finite sets. *Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar

[30] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495-500, 2001.Google Scholar

[31] Andrzej Kondracki. The Chinese Remainder Theorem. *Formalized Mathematics*, 6(4):573-577, 1997.Google Scholar

[32] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. *Formalized Mathematics*, 4(1):109-113, 1993.Google Scholar

[33] Jarosław Kotowicz. Monotone real sequences. Subsequences. *Formalized Mathematics*, 1(3):471-475, 1990.Google Scholar

[34] Jarosław Kotowicz. Real sequences and basic operations on them. *Formalized Mathematics*, 1(2):269-272, 1990.Google Scholar

[35] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. *Formalized Mathematics*, 3(2):251-253, 1992.Google Scholar

[36] Beata Padlewska. Families of sets. *Formalized Mathematics*, 1(1):147-152, 1990.Google Scholar

[37] Beata Perkowska. Free universal algebra construction. *Formalized Mathematics*, 4(1):115-120, 1993.Google Scholar

[38] Beata Perkowska. Free many sorted universal algebra. *Formalized Mathematics*, 5(1):67-74, 1996.Google Scholar

[39] Andrzej Trybulec. Subsets of complex numbers. *To appear in Formalized Mathematics*.Google Scholar

[40] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar

[41] Andrzej Trybulec. Function domains and Fránkel operator. *Formalized Mathematics*, 1(3):495-500, 1990.Google Scholar

[42] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar

[43] Andrzej Trybulec. Many-sorted sets. *Formalized Mathematics*, 4(1):15-22, 1993.Google Scholar

[44] Andrzej Trybulec. Many sorted algebras. *Formalized Mathematics*, 5(1):37-42, 1996.Google Scholar

[45] Andrzej Trybulec. On the sets inhabited by numbers. *Formalized Mathematics*, 11(4):341-347, 2003.Google Scholar

[46] Wojciech A. Trybulec. Pigeon hole principle. *Formalized Mathematics*, 1(3):575-579, 1990.Google Scholar

[47] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar

[48] Edmund Woronowicz. Many-argument relations. *Formalized Mathematics*, 1(4):733-737, 1990.Google Scholar

[49] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar

[50] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

## Comments (0)