Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Formalized Mathematics

(a computer assisted approach)

Editor-in-Chief: Matuszewski, Roman

4 Issues per year


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Open Access
Online
ISSN
1898-9934
See all formats and pricing
More options …
Volume 15, Issue 3 (Jan 2007)

Issues

String Rewriting Systems

Michał Trybulec
Published Online: 2008-06-09 | DOI: https://doi.org/10.2478/v10037-007-0013-8

String Rewriting Systems

Basing on the definitions from [15], semi-Thue systems, Thue systems, and direct derivations are introduced. Next, the standard reduction relation is defined that, in turn, is used to introduce derivations using the theory from [1]. Finally, languages generated by rewriting systems are defined as all strings reachable from an initial word. This is followed by the introduction of the equivalence of semi-Thue systems with respect to the initial word.

  • [1] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.Google Scholar

  • [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Google Scholar

  • [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Google Scholar

  • [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Google Scholar

  • [5] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.Google Scholar

  • [6] Markus Moschner. Basic notions and properties of orthoposets. Formalized Mathematics, 11(2):201-210, 2003.Google Scholar

  • [7] Karol Pαk. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153-159, 2006.Google Scholar

  • [8] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.Google Scholar

  • [9] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Google Scholar

  • [10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Google Scholar

  • [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.Google Scholar

  • [12] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics, 15(1):11-15, 2007.Google Scholar

  • [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Google Scholar

  • [14] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.Google Scholar

  • [15] William M. Waite and Gerhard Goos. Compiler Construction. Springer-Verlag New York Inc., 1984.Google Scholar

  • [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Google Scholar

  • [17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Google Scholar

  • [18] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.Google Scholar

About the article


Published Online: 2008-06-09

Published in Print: 2007-01-01


Citation Information: Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-007-0013-8.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in