## Some Properties of Line and Column Operations on Matrices

This article describes definitions of elementary operations about matrix and their main properties.

Show Summary Details# Some Properties of Line and Column Operations on Matrices

#### Open Access

## Some Properties of Line and Column Operations on Matrices

## About the article

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Xiquan Liang / Tao Sun / Dahai Hu

This article describes definitions of elementary operations about matrix and their main properties.

[1] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.

*Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar[3] Czesław Byliński. Binary operations applied to finite sequences.

*Formalized Mathematics*, 1(4):643-649, 1990.Google Scholar[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets.

*Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar[5] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar[6] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar[7] Czesław Byliński. Some basic properties of sets.

*Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar[8] Katarzyna Jankowska. Matrices. Abelian group of matrices.

*Formalized Mathematics*, 2(4):475-480, 1991.Google Scholar[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces.

*Formalized Mathematics*, 1(2):335-342, 1990.Google Scholar[10] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring.

*Formalized Mathematics*, 2(1):3-11, 1991.Google Scholar[11] Andrzej Trybulec. Subsets of complex numbers.

*To appear in Formalized Mathematics.*Google Scholar[12] Andrzej Trybulec. Binary operations applied to functions.

*Formalized Mathematics*, 1(2):329-334, 1990.Google Scholar[13] Andrzej Trybulec. Tarski Grothendieck set theory.

*Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar[14] Wojciech A. Trybulec. Binary operations on finite sequences.

*Formalized Mathematics*, 1(5):979-981, 1990.Google Scholar[15] Wojciech A. Trybulec. Groups.

*Formalized Mathematics*, 1(5):821-827, 1990.Google Scholar[16] Wojciech A. Trybulec. Vectors in real linear space.

*Formalized Mathematics*, 1(2):291-296, 1990.Google Scholar[17] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[18] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar[19] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices.

*Formalized Mathematics*, 13(4):541-547, 2005.Google Scholar[20] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field.

*Formalized Mathematics*, 3(2):205-211, 1992.Google Scholar[21] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field.

*Formalized Mathematics*, 4(1):1-8, 1993.Google Scholar

**Published Online**: 2008-06-09

**Published in Print**: 2007-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-007-0017-4.

This content is open access.

## Comments (0)