## The Sylow Theorems

The goal of this article is to formalize the Sylow theorems closely following the book [4]. Accordingly, the article introduces the group operating on a set, the stabilizer, the orbits, the *p*-groups and the Sylow subgroups.

Show Summary Details# The Sylow Theorems

#### Open Access

## The Sylow Theorems

## About the article

## Citing Articles

*Formalized Mathematics*, 2011, Volume 19, Number 1*Formalized Mathematics*, 2008, Volume 16, Number 2

More options …# Formalized Mathematics

### (a computer assisted approach)

More options …

Editor-in-Chief: Matuszewski, Roman

4 Issues per year

SCImago Journal Rank (SJR) 2016: 0.207

Source Normalized Impact per Paper (SNIP) 2016: 0.315

Marco Riccardi

The goal of this article is to formalize the Sylow theorems closely following the book [4]. Accordingly, the article introduces the group operating on a set, the stabilizer, the orbits, the *p*-groups and the Sylow subgroups.

[1] Grzegorz Bancerek. Cardinal numbers.

*Formalized Mathematics*, 1(2):377-382, 1990.Google Scholar[2] Grzegorz Bancerek. The ordinal numbers.

*Formalized Mathematics*, 1(1):91-96, 1990.Google Scholar[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.

*Formalized Mathematics*, 1(1):107-114, 1990.Google Scholar[4] Nicolas Bourbaki.

*Elements of Mathematics. Algebra I. Chapters 1-3.*Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.Google Scholar[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets.

*Formalized Mathematics*, 1(3):529-536, 1990.Google Scholar[6] Czesław Byliński. Functions and their basic properties.

*Formalized Mathematics*, 1(1):55-65, 1990.Google Scholar[7] Czesław Byliński. Functions from a set to a set.

*Formalized Mathematics*, 1(1):153-164, 1990.Google Scholar[8] Czesław Byliński. Partial functions.

*Formalized Mathematics*, 1(2):357-367, 1990.Google Scholar[9] Czesław Byliński. Some basic properties of sets.

*Formalized Mathematics*, 1(1):47-53, 1990.Google Scholar[10] Czesław Byliński. The sum and product of finite sequences of real numbers.

*Formalized Mathematics*, 1(4):661-668, 1990.Google Scholar[11] Agata Darmochwał. Finite sets.

*Formalized Mathematics*, 1(1):165-167, 1990.Google Scholar[12] Artur Korniłowicz. The definition and basic properties of topological groups.

*Formalized Mathematics*, 7(2):217-225, 1998.Google Scholar[13] Rafał Kwiatek. Factorial and Newton coefficients.

*Formalized Mathematics*, 1(5):887-890, 1990.Google Scholar[14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes.

*Formalized Mathematics*, 1(5):829-832, 1990.Google Scholar[15] Karol Pak. Cardinal numbers and finite sets.

*Formalized Mathematics*, 13(3):399-406, 2005.Google Scholar[16] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction.

*Formalized Mathematics*, 1(3):441-444, 1990.Google Scholar[17] Dariusz Surowik. Cyclic groups and some of their properties - part I.

*Formalized Mathematics*, 2(5):623-627, 1991.Google Scholar[18] Andrzej Trybulec. Subsets of complex numbers.

*To appear in Formalized Mathematics.*Google Scholar[19] Andrzej Trybulec. Domains and their Cartesian products.

*Formalized Mathematics*, 1(1):115-122, 1990.Google Scholar[20] Andrzej Trybulec. Tarski Grothendieck set theory.

*Formalized Mathematics*, 1(1):9-11, 1990.Google Scholar[21] Michał J. Trybulec. Integers.

*Formalized Mathematics*, 1(3):501-505, 1990.Google Scholar[22] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups.

*Formalized Mathematics*, 1(5):955-962, 1990.Google Scholar[23] Wojciech A. Trybulec. Groups.

*Formalized Mathematics*, 1(5):821-827, 1990.Google Scholar[24] Wojciech A. Trybulec. Subgroup and cosets of subgroups.

*Formalized Mathematics*, 1(5):855-864, 1990.Google Scholar[25] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group.

*Formalized Mathematics*, 2(4):573-578, 1991.Google Scholar[26] Zinaida Trybulec. Properties of subsets.

*Formalized Mathematics*, 1(1):67-71, 1990.Google Scholar[27] Edmund Woronowicz. Relations and their basic properties.

*Formalized Mathematics*, 1(1):73-83, 1990.Google Scholar[28] Edmund Woronowicz. Relations defined on sets.

*Formalized Mathematics*, 1(1):181-186, 1990.Google Scholar

**Published Online**: 2008-06-09

**Published in Print**: 2007-01-01

**Citation Information: **Formalized Mathematics, ISSN (Online) 1898-9934, ISSN (Print) 1426-2630, DOI: https://doi.org/10.2478/v10037-007-0018-3.

This content is open access.

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Xiquan Liang and Dailu Li

[2]

Marco Riccardi

## Comments (0)